基于自回归时滞神经网络的鸟鸣自动识别

S. Selouani, Mustapha Kardouchi, É. Hervet, D. Roy
{"title":"基于自回归时滞神经网络的鸟鸣自动识别","authors":"S. Selouani, Mustapha Kardouchi, É. Hervet, D. Roy","doi":"10.1109/CIMA.2005.1662316","DOIUrl":null,"url":null,"abstract":"A template-based technique for automatic recognition of birdsong syllables is presented. This technique combines time delay neural networks (TDNNs) with an autoregressive (AR) version of the backpropagation algorithm in order to improve the accuracy of bird species identification. The proposed neural network structure (AR-TDNN) has the advantage of dealing with a pattern classification of syllable alphabet and also of capturing the temporal structure of birdsong. We choose to carry out trials on song patterns obtained from sixteen species living in New Brunswick province of Canada. The results show that the proposed AR-TDNN system achieves a highly recognition rate compared to the baseline backpropagation-based system","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Automatic birdsong recognition based on autoregressive time-delay neural networks\",\"authors\":\"S. Selouani, Mustapha Kardouchi, É. Hervet, D. Roy\",\"doi\":\"10.1109/CIMA.2005.1662316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A template-based technique for automatic recognition of birdsong syllables is presented. This technique combines time delay neural networks (TDNNs) with an autoregressive (AR) version of the backpropagation algorithm in order to improve the accuracy of bird species identification. The proposed neural network structure (AR-TDNN) has the advantage of dealing with a pattern classification of syllable alphabet and also of capturing the temporal structure of birdsong. We choose to carry out trials on song patterns obtained from sixteen species living in New Brunswick province of Canada. The results show that the proposed AR-TDNN system achieves a highly recognition rate compared to the baseline backpropagation-based system\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

提出了一种基于模板的鸟鸣音节自动识别技术。该技术将时滞神经网络(TDNNs)与自回归(AR)版本的反向传播算法相结合,以提高鸟类物种识别的准确性。所提出的神经网络结构(AR-TDNN)具有处理音节字母表模式分类和捕捉鸟鸣时间结构的优点。我们选择对生活在加拿大新不伦瑞克省的16个物种的鸣声模式进行试验。结果表明,与基于基线反向传播的系统相比,本文提出的AR-TDNN系统具有较高的识别率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic birdsong recognition based on autoregressive time-delay neural networks
A template-based technique for automatic recognition of birdsong syllables is presented. This technique combines time delay neural networks (TDNNs) with an autoregressive (AR) version of the backpropagation algorithm in order to improve the accuracy of bird species identification. The proposed neural network structure (AR-TDNN) has the advantage of dealing with a pattern classification of syllable alphabet and also of capturing the temporal structure of birdsong. We choose to carry out trials on song patterns obtained from sixteen species living in New Brunswick province of Canada. The results show that the proposed AR-TDNN system achieves a highly recognition rate compared to the baseline backpropagation-based system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信