无人机视频中的全景拼接、运动目标检测与跟踪

Quanlu Wei, Songyang Lao, Liang Bai
{"title":"无人机视频中的全景拼接、运动目标检测与跟踪","authors":"Quanlu Wei, Songyang Lao, Liang Bai","doi":"10.1109/ICVISP.2017.13","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles(UAV) are more and more wildly used recent years in many fields. It's convenient to acquire more static and dynamic information by uav aerial videos to grasp the scene situation. Frames registration, panoramic image mosaic, moving objects detection and tracking are the key and foundation of the aerial video analysis and processing. Firstly, we use a l_q-estimation method to remove the outliers and match the feature points robustly. Then we utilize a Moving Direct Linear Transformation (MDLT) method to find the homography of the frames more accurately, and stitch the frame sequence to a panorama. Finally, we apply a 5-frame difference method on the warped frames to detect the moving objects, and use a long-term visual tracking method to track the object of interest in complex scenes. The experiments show that our method achieve good results in different conditions.","PeriodicalId":404467,"journal":{"name":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Panorama Stitching, Moving Object Detection and Tracking in UAV Videos\",\"authors\":\"Quanlu Wei, Songyang Lao, Liang Bai\",\"doi\":\"10.1109/ICVISP.2017.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Vehicles(UAV) are more and more wildly used recent years in many fields. It's convenient to acquire more static and dynamic information by uav aerial videos to grasp the scene situation. Frames registration, panoramic image mosaic, moving objects detection and tracking are the key and foundation of the aerial video analysis and processing. Firstly, we use a l_q-estimation method to remove the outliers and match the feature points robustly. Then we utilize a Moving Direct Linear Transformation (MDLT) method to find the homography of the frames more accurately, and stitch the frame sequence to a panorama. Finally, we apply a 5-frame difference method on the warped frames to detect the moving objects, and use a long-term visual tracking method to track the object of interest in complex scenes. The experiments show that our method achieve good results in different conditions.\",\"PeriodicalId\":404467,\"journal\":{\"name\":\"2017 International Conference on Vision, Image and Signal Processing (ICVISP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Vision, Image and Signal Processing (ICVISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVISP.2017.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVISP.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,无人飞行器(UAV)在许多领域得到了越来越广泛的应用。无人机航拍视频便于获取更多的静态和动态信息,掌握现场情况。帧配准、全景图像拼接、运动目标检测与跟踪是航空视频分析与处理的关键和基础。首先,我们使用l_q估计方法去除异常点并对特征点进行鲁棒匹配。然后利用移动直接线性变换(MDLT)方法更精确地找到帧的单应性,并将帧序列拼接成全景图。最后,对扭曲帧采用5帧差分方法检测运动目标,并采用长期视觉跟踪方法跟踪复杂场景中的感兴趣目标。实验表明,该方法在不同条件下均取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Panorama Stitching, Moving Object Detection and Tracking in UAV Videos
Unmanned Aerial Vehicles(UAV) are more and more wildly used recent years in many fields. It's convenient to acquire more static and dynamic information by uav aerial videos to grasp the scene situation. Frames registration, panoramic image mosaic, moving objects detection and tracking are the key and foundation of the aerial video analysis and processing. Firstly, we use a l_q-estimation method to remove the outliers and match the feature points robustly. Then we utilize a Moving Direct Linear Transformation (MDLT) method to find the homography of the frames more accurately, and stitch the frame sequence to a panorama. Finally, we apply a 5-frame difference method on the warped frames to detect the moving objects, and use a long-term visual tracking method to track the object of interest in complex scenes. The experiments show that our method achieve good results in different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信