基于强化学习的管道系统状态维护调度

Raphael Lamprecht, Ferdinand Wurst, Marco F. Huber
{"title":"基于强化学习的管道系统状态维护调度","authors":"Raphael Lamprecht, Ferdinand Wurst, Marco F. Huber","doi":"10.1109/INDIN45523.2021.9557373","DOIUrl":null,"url":null,"abstract":"Maintenance scheduling is a complex decision-making problem in the production domain, where a number of maintenance tasks and resources has to be assigned and scheduled to production entities in order to prevent unplanned production downtime. Intelligent maintenance strategies are required that are able to adapt to the dynamics and different conditions of production systems. The paper introduces a deep reinforcement learning approach for condition-oriented maintenance scheduling in flow line systems. Different policies are learned, analyzed and evaluated against a benchmark scheduling heuristic based on reward modelling. The evaluation of the learned policies shows that reinforcement learning based maintenance strategies meet the requirements of the presented use case and are suitable for maintenance scheduling in the shop floor.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinforcement Learning based Condition-oriented Maintenance Scheduling for Flow Line Systems\",\"authors\":\"Raphael Lamprecht, Ferdinand Wurst, Marco F. Huber\",\"doi\":\"10.1109/INDIN45523.2021.9557373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintenance scheduling is a complex decision-making problem in the production domain, where a number of maintenance tasks and resources has to be assigned and scheduled to production entities in order to prevent unplanned production downtime. Intelligent maintenance strategies are required that are able to adapt to the dynamics and different conditions of production systems. The paper introduces a deep reinforcement learning approach for condition-oriented maintenance scheduling in flow line systems. Different policies are learned, analyzed and evaluated against a benchmark scheduling heuristic based on reward modelling. The evaluation of the learned policies shows that reinforcement learning based maintenance strategies meet the requirements of the presented use case and are suitable for maintenance scheduling in the shop floor.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

维护调度是生产领域中一个复杂的决策问题,其中必须将许多维护任务和资源分配和调度给生产实体,以防止计划外的生产停机时间。智能维护策略需要能够适应生产系统的动态和不同条件。介绍了一种基于深度强化学习的管道系统状态维护调度方法。根据基于奖励模型的基准调度启发式算法学习、分析和评估不同的策略。对学习策略的评估表明,基于强化学习的维护策略满足所提出用例的要求,适合于车间的维护调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning based Condition-oriented Maintenance Scheduling for Flow Line Systems
Maintenance scheduling is a complex decision-making problem in the production domain, where a number of maintenance tasks and resources has to be assigned and scheduled to production entities in order to prevent unplanned production downtime. Intelligent maintenance strategies are required that are able to adapt to the dynamics and different conditions of production systems. The paper introduces a deep reinforcement learning approach for condition-oriented maintenance scheduling in flow line systems. Different policies are learned, analyzed and evaluated against a benchmark scheduling heuristic based on reward modelling. The evaluation of the learned policies shows that reinforcement learning based maintenance strategies meet the requirements of the presented use case and are suitable for maintenance scheduling in the shop floor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信