一种用于唯一字前缀单载波频域均衡的压缩感知稀疏信道估计方法

Qingwei Meng, Xiangru Meng, Zhiqiang Ma
{"title":"一种用于唯一字前缀单载波频域均衡的压缩感知稀疏信道估计方法","authors":"Qingwei Meng, Xiangru Meng, Zhiqiang Ma","doi":"10.1109/ICSPCC.2017.8242626","DOIUrl":null,"url":null,"abstract":"In this paper, a compressed sensing (CS) based sparse channel estimation method is proposed for Unique Word (UW) Prefixed SC-FDE employed in sparse wireless channels, sparse channel estimation is formulated as a typical CS problem, and UW generation schemes are discussed, in addition, DantzigD selector is used to recover sparse channel impulse response (CIR) from limited number of noisy observation measurements. Simulation results based on a typical sparse underwater acoustic channel profile show that CS based channel estimation methods outperform the widely utilized time domain and frequency domain least-square (LS) channel estimation methods in bit error rate (BER) and normalized mean-square error (NMSE). The channel estimation accuracy can be significantly improved compared to time domain LS estimation method.","PeriodicalId":192839,"journal":{"name":"International Conference on Signal Processing, Communications and Computing","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A compressed sensing sparse channel estimation method for unique word prefixed single carrier frequency domain equalization\",\"authors\":\"Qingwei Meng, Xiangru Meng, Zhiqiang Ma\",\"doi\":\"10.1109/ICSPCC.2017.8242626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a compressed sensing (CS) based sparse channel estimation method is proposed for Unique Word (UW) Prefixed SC-FDE employed in sparse wireless channels, sparse channel estimation is formulated as a typical CS problem, and UW generation schemes are discussed, in addition, DantzigD selector is used to recover sparse channel impulse response (CIR) from limited number of noisy observation measurements. Simulation results based on a typical sparse underwater acoustic channel profile show that CS based channel estimation methods outperform the widely utilized time domain and frequency domain least-square (LS) channel estimation methods in bit error rate (BER) and normalized mean-square error (NMSE). The channel estimation accuracy can be significantly improved compared to time domain LS estimation method.\",\"PeriodicalId\":192839,\"journal\":{\"name\":\"International Conference on Signal Processing, Communications and Computing\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing, Communications and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC.2017.8242626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing, Communications and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2017.8242626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compressed sensing sparse channel estimation method for unique word prefixed single carrier frequency domain equalization
In this paper, a compressed sensing (CS) based sparse channel estimation method is proposed for Unique Word (UW) Prefixed SC-FDE employed in sparse wireless channels, sparse channel estimation is formulated as a typical CS problem, and UW generation schemes are discussed, in addition, DantzigD selector is used to recover sparse channel impulse response (CIR) from limited number of noisy observation measurements. Simulation results based on a typical sparse underwater acoustic channel profile show that CS based channel estimation methods outperform the widely utilized time domain and frequency domain least-square (LS) channel estimation methods in bit error rate (BER) and normalized mean-square error (NMSE). The channel estimation accuracy can be significantly improved compared to time domain LS estimation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信