神经模糊算法与多模态决策学习算法心电分类的比较分析

G. Naik, K. Reddy
{"title":"神经模糊算法与多模态决策学习算法心电分类的比较分析","authors":"G. Naik, K. Reddy","doi":"10.1109/ISCMI.2016.35","DOIUrl":null,"url":null,"abstract":"Classification of ECGs is an important task for proper identification of the signal which helps in suitable diagnosis of the patient. This paper proposes a new algorithm for ECG basic classification as normal or abnormal. As there are many existing methods for classification like support vector machine, neural networks, neuro-fuzzy algorithms and so on, the main objective of this work is to compare performance analysis of two selected methods, one with adaptive neuro-fuzzy algorithm as the existing method and the other with the proposed method i.e., multimodal decision learning algorithm. The comparative analysis deals with the parameters like true positive (TP), true negative (TN), False positive (FP), False negative (FN), False rejection ratio (FRR), false acceptance ratio (FAR), global acceptance ratio (GAR), confusion matrix (CM), Kappa coefficient (KC), Sensitivity, Specificity and Accuracy. Pre-recorded ECG signals of MIT-BIH database are used for processing, filtering, classification and performance evaluation. Simulation results indicate the ECG signal as normal or abnormal with respect to the above defined parameters.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Analysis of ECG Classification Using Neuro-Fuzzy Algorithm and Multimodal Decision Learning Algorithm: ECG Classification Algorithm\",\"authors\":\"G. Naik, K. Reddy\",\"doi\":\"10.1109/ISCMI.2016.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of ECGs is an important task for proper identification of the signal which helps in suitable diagnosis of the patient. This paper proposes a new algorithm for ECG basic classification as normal or abnormal. As there are many existing methods for classification like support vector machine, neural networks, neuro-fuzzy algorithms and so on, the main objective of this work is to compare performance analysis of two selected methods, one with adaptive neuro-fuzzy algorithm as the existing method and the other with the proposed method i.e., multimodal decision learning algorithm. The comparative analysis deals with the parameters like true positive (TP), true negative (TN), False positive (FP), False negative (FN), False rejection ratio (FRR), false acceptance ratio (FAR), global acceptance ratio (GAR), confusion matrix (CM), Kappa coefficient (KC), Sensitivity, Specificity and Accuracy. Pre-recorded ECG signals of MIT-BIH database are used for processing, filtering, classification and performance evaluation. Simulation results indicate the ECG signal as normal or abnormal with respect to the above defined parameters.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心电图的分类是正确识别信号的一项重要任务,有助于对患者进行正确的诊断。提出了一种新的心电正常与异常基本分类算法。由于现有的分类方法有很多,如支持向量机、神经网络、神经模糊算法等,本工作的主要目的是比较两种选择的方法的性能分析,一种是采用自适应神经模糊算法作为现有的方法,另一种是采用本文提出的方法,即多模态决策学习算法。比较分析涉及真阳性(TP)、真阴性(TN)、假阳性(FP)、假阴性(FN)、假拒绝率(FRR)、假接受率(FAR)、整体接受率(GAR)、混淆矩阵(CM)、Kappa系数(KC)、Sensitivity、Specificity和Accuracy等参数。使用MIT-BIH数据库预录的心电信号进行处理、滤波、分类和性能评价。仿真结果表明,相对于上述定义的参数,心电信号正常或异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of ECG Classification Using Neuro-Fuzzy Algorithm and Multimodal Decision Learning Algorithm: ECG Classification Algorithm
Classification of ECGs is an important task for proper identification of the signal which helps in suitable diagnosis of the patient. This paper proposes a new algorithm for ECG basic classification as normal or abnormal. As there are many existing methods for classification like support vector machine, neural networks, neuro-fuzzy algorithms and so on, the main objective of this work is to compare performance analysis of two selected methods, one with adaptive neuro-fuzzy algorithm as the existing method and the other with the proposed method i.e., multimodal decision learning algorithm. The comparative analysis deals with the parameters like true positive (TP), true negative (TN), False positive (FP), False negative (FN), False rejection ratio (FRR), false acceptance ratio (FAR), global acceptance ratio (GAR), confusion matrix (CM), Kappa coefficient (KC), Sensitivity, Specificity and Accuracy. Pre-recorded ECG signals of MIT-BIH database are used for processing, filtering, classification and performance evaluation. Simulation results indicate the ECG signal as normal or abnormal with respect to the above defined parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信