多目标检测与跟踪的模型更新粒子滤波

Yunji Zhao, Hailong Pei
{"title":"多目标检测与跟踪的模型更新粒子滤波","authors":"Yunji Zhao, Hailong Pei","doi":"10.1109/IPTC.2011.10","DOIUrl":null,"url":null,"abstract":"Multiple objects tracking is a challenging task. This article presents an algorithm which can detect and track multiple objects, and update target model automatically. The contributions of this paper as follow: Firstly, we use color histogram(HC) and histogram of orientated gradients(HOG) to represent the objects, model update is realized under the frame of kalman filter and gaussian model, secondly we use Gaussian Mixture Model(GMM) and Bhattacharyya distance to detect object appearance. Particle filter with combined features and model update mechanism can improve tracking effects. Experiments on video sequences demonstrate that multiple objects tracking based on improved algorithm have good performance.","PeriodicalId":388589,"journal":{"name":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Model Update Particle Filter for Multiple Objects Detection and Tracking\",\"authors\":\"Yunji Zhao, Hailong Pei\",\"doi\":\"10.1109/IPTC.2011.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple objects tracking is a challenging task. This article presents an algorithm which can detect and track multiple objects, and update target model automatically. The contributions of this paper as follow: Firstly, we use color histogram(HC) and histogram of orientated gradients(HOG) to represent the objects, model update is realized under the frame of kalman filter and gaussian model, secondly we use Gaussian Mixture Model(GMM) and Bhattacharyya distance to detect object appearance. Particle filter with combined features and model update mechanism can improve tracking effects. Experiments on video sequences demonstrate that multiple objects tracking based on improved algorithm have good performance.\",\"PeriodicalId\":388589,\"journal\":{\"name\":\"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTC.2011.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTC.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多目标跟踪是一项具有挑战性的任务。本文提出了一种能够对多个目标进行检测和跟踪,并自动更新目标模型的算法。本文的贡献如下:首先,我们使用颜色直方图(HC)和方向梯度直方图(HOG)来表示目标,在卡尔曼滤波和高斯模型框架下实现模型更新;其次,我们使用高斯混合模型(GMM)和Bhattacharyya距离来检测目标的外观。结合特征和模型更新机制的粒子滤波可以改善跟踪效果。对视频序列的实验表明,基于改进算法的多目标跟踪具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Update Particle Filter for Multiple Objects Detection and Tracking
Multiple objects tracking is a challenging task. This article presents an algorithm which can detect and track multiple objects, and update target model automatically. The contributions of this paper as follow: Firstly, we use color histogram(HC) and histogram of orientated gradients(HOG) to represent the objects, model update is realized under the frame of kalman filter and gaussian model, secondly we use Gaussian Mixture Model(GMM) and Bhattacharyya distance to detect object appearance. Particle filter with combined features and model update mechanism can improve tracking effects. Experiments on video sequences demonstrate that multiple objects tracking based on improved algorithm have good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信