{"title":"基于体效应补偿的自举栅极MOS采样保持电路失真降低技术","authors":"S. Sen, K. Shaik, J. Mukherjee, P. Dhalvaniya","doi":"10.1109/FTFC.2014.6828613","DOIUrl":null,"url":null,"abstract":"A distortion improvement technique for bootstrapped-gate Sample-and-Hold (S/H) circuits, is proposed. The gate overdrive voltage and conductance of the MOS sampling switch are made constant by cancelling the body-effect induced variations in the threshold-voltage. An amplifier is used to provide appropriate gain in the bootstrapped-gate path. The technique allows the minimized second-harmonic distortion (HD2) by adjusting the gain to Ag =1+kγ1, where kγ1 is the sensitivity of threshold voltage to the source voltage. Furthermore, the S/H distortion remains insensitive to the amplifier op-amp characteristics. Chip prototype measurement results of a single-ended S/H amplifier using 0.18 μm CMOS technology show HD2 improvement of 11 dB over conventional bootstrapped-gate S/H.","PeriodicalId":138166,"journal":{"name":"2014 IEEE Faible Tension Faible Consommation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A distortion reduction technique for bootstrapped-gate MOS Sample-and-Hold circuits using body-effect compensation\",\"authors\":\"S. Sen, K. Shaik, J. Mukherjee, P. Dhalvaniya\",\"doi\":\"10.1109/FTFC.2014.6828613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distortion improvement technique for bootstrapped-gate Sample-and-Hold (S/H) circuits, is proposed. The gate overdrive voltage and conductance of the MOS sampling switch are made constant by cancelling the body-effect induced variations in the threshold-voltage. An amplifier is used to provide appropriate gain in the bootstrapped-gate path. The technique allows the minimized second-harmonic distortion (HD2) by adjusting the gain to Ag =1+kγ1, where kγ1 is the sensitivity of threshold voltage to the source voltage. Furthermore, the S/H distortion remains insensitive to the amplifier op-amp characteristics. Chip prototype measurement results of a single-ended S/H amplifier using 0.18 μm CMOS technology show HD2 improvement of 11 dB over conventional bootstrapped-gate S/H.\",\"PeriodicalId\":138166,\"journal\":{\"name\":\"2014 IEEE Faible Tension Faible Consommation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Faible Tension Faible Consommation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTFC.2014.6828613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Faible Tension Faible Consommation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTFC.2014.6828613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distortion reduction technique for bootstrapped-gate MOS Sample-and-Hold circuits using body-effect compensation
A distortion improvement technique for bootstrapped-gate Sample-and-Hold (S/H) circuits, is proposed. The gate overdrive voltage and conductance of the MOS sampling switch are made constant by cancelling the body-effect induced variations in the threshold-voltage. An amplifier is used to provide appropriate gain in the bootstrapped-gate path. The technique allows the minimized second-harmonic distortion (HD2) by adjusting the gain to Ag =1+kγ1, where kγ1 is the sensitivity of threshold voltage to the source voltage. Furthermore, the S/H distortion remains insensitive to the amplifier op-amp characteristics. Chip prototype measurement results of a single-ended S/H amplifier using 0.18 μm CMOS technology show HD2 improvement of 11 dB over conventional bootstrapped-gate S/H.