基于因果自编码器的多元时间序列长视界异常预测

M. Asres, G. Cummings, A. Khukhunaishvili, P. Parygin, S. Cooper, D. Yu, J. Dittmann, C. Omlin
{"title":"基于因果自编码器的多元时间序列长视界异常预测","authors":"M. Asres, G. Cummings, A. Khukhunaishvili, P. Parygin, S. Cooper, D. Yu, J. Dittmann, C. Omlin","doi":"10.36001/phme.2022.v7i1.3367","DOIUrl":null,"url":null,"abstract":"Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders\",\"authors\":\"M. Asres, G. Cummings, A. Khukhunaishvili, P. Parygin, S. Cooper, D. Yu, J. Dittmann, C. Omlin\",\"doi\":\"10.36001/phme.2022.v7i1.3367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于复杂的工业系统来说,预测性维护在主要系统故障或最终故障之前预见异常是必不可少的。然而,工业4.0预测监测的现有工作主要针对半监督异常检测,对于大型系统的鲁棒性有限,这些系统通常伴随着未清理和未标记的数据。我们通过数据驱动的端到端深度学习模型,利用多变量时间序列传感器数据的早期预警症状,解决了预测异常的挑战。我们引入了一种基于无监督的基于注意的因果残差网络的长时间多步异常预测系统AnoP,以发出异常警报以预防异常。对欧洲核子研究中心LHC强子量热仪探测器健康监测大数据集的实验评估表明,该方法具有良好的效果。AnoP可以提前7天预测60%左右的异常,而大多数未被发现的异常都带有不可预测的噪音行为。此外,它还在热量计的传感器中发现了以前未知的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信