图的独立性和匹配杂波的硬度

Sasun Hambartsumyan, V. Mkrtchyan, Vahe L. Musoyan, H. Sargsyan
{"title":"图的独立性和匹配杂波的硬度","authors":"Sasun Hambartsumyan, V. Mkrtchyan, Vahe L. Musoyan, H. Sargsyan","doi":"10.7494/OPMATH.2016.36.3.375","DOIUrl":null,"url":null,"abstract":"A {\\it clutter} (or {\\it antichain} or {\\it Sperner family}) $L$ is a pair $(V,E)$, where $V$ is a finite set and $E$ is a family of subsets of $V$ none of which is a subset of another. Usually, the elements of $V$ are called {\\it vertices} of $L$, and the elements of $E$ are called {\\it edges} of $L$. A subset $s_e$ of an edge $e$ of a clutter is called {\\it recognizing} for $e$, if $s_e$ is not a subset of another edge. The {\\it hardness} of an edge $e$ of a clutter is the ratio of the size of $e\\textrm{'s}$ smallest recognizing subset to the size of $e$. The hardness of a clutter is the maximum hardness of its edges. We study the hardness of clutters arising from independent sets and matchings of graphs.","PeriodicalId":111854,"journal":{"name":"arXiv: Discrete Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The hardness of the independence and matching clutter of a graph\",\"authors\":\"Sasun Hambartsumyan, V. Mkrtchyan, Vahe L. Musoyan, H. Sargsyan\",\"doi\":\"10.7494/OPMATH.2016.36.3.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A {\\\\it clutter} (or {\\\\it antichain} or {\\\\it Sperner family}) $L$ is a pair $(V,E)$, where $V$ is a finite set and $E$ is a family of subsets of $V$ none of which is a subset of another. Usually, the elements of $V$ are called {\\\\it vertices} of $L$, and the elements of $E$ are called {\\\\it edges} of $L$. A subset $s_e$ of an edge $e$ of a clutter is called {\\\\it recognizing} for $e$, if $s_e$ is not a subset of another edge. The {\\\\it hardness} of an edge $e$ of a clutter is the ratio of the size of $e\\\\textrm{'s}$ smallest recognizing subset to the size of $e$. The hardness of a clutter is the maximum hardness of its edges. We study the hardness of clutters arising from independent sets and matchings of graphs.\",\"PeriodicalId\":111854,\"journal\":{\"name\":\"arXiv: Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2016.36.3.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2016.36.3.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

A {\it杂波}(或{\it反链}或{\it Sperner族})$L$是一对$(V,E)$,其中$V$是一个有限集,$E$是$V$的子集族,其中$V$都不是另一个的子集。通常,$V$的元素称为$L$的{\it顶点},$E$的元素称为$L$的{\it边}。如果$s_e$不是另一条边的子集,则杂波的边$s_e$的子集$s_e$对于$e$称为{\it recognition}。杂波边缘$e$的{\it硬度}是$e\textrm{'s}$最小识别子集的大小与$e$的大小之比。杂波的硬度是其边缘的最大硬度。我们研究了图的独立集和匹配所产生的杂波的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hardness of the independence and matching clutter of a graph
A {\it clutter} (or {\it antichain} or {\it Sperner family}) $L$ is a pair $(V,E)$, where $V$ is a finite set and $E$ is a family of subsets of $V$ none of which is a subset of another. Usually, the elements of $V$ are called {\it vertices} of $L$, and the elements of $E$ are called {\it edges} of $L$. A subset $s_e$ of an edge $e$ of a clutter is called {\it recognizing} for $e$, if $s_e$ is not a subset of another edge. The {\it hardness} of an edge $e$ of a clutter is the ratio of the size of $e\textrm{'s}$ smallest recognizing subset to the size of $e$. The hardness of a clutter is the maximum hardness of its edges. We study the hardness of clutters arising from independent sets and matchings of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信