在满是ce的skutterudites中有很高的功绩

J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner
{"title":"在满是ce的skutterudites中有很高的功绩","authors":"J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner","doi":"10.1109/ICT.1996.553263","DOIUrl":null,"url":null,"abstract":"New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"High figure of merit in Ce-filled skutterudites\",\"authors\":\"J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner\",\"doi\":\"10.1109/ICT.1996.553263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.\",\"PeriodicalId\":447328,\"journal\":{\"name\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1996.553263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

在高温下具有优越输运性能的新型热电材料已经被发现。这些材料是一大家族的一部分,这类化合物已显示出热电应用的良好潜力。这些新材料的组成被称为填充型角钼矿,是由角钼矿的晶体结构衍生而来的,可以用公式LnT/sub 4/Pn/sub 12/ (Ln=稀土,Th;T=Fe, Rn, Os, Co, Rh, Ir;Pn=P, As, Sb)。在这些化合物中,在TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/)框架中形成的方晶石结构的空八域被稀土元素填充。其中一些基于CeFe/sub 4/Sb/sub 12/的组合物是通过熔融和粉末冶金技术相结合制备的,并且在350-700/spl℃的温度范围内表现出优异的热电性能。在室温下,CeFe/sub 4/Sb/sub 12/表现为p型半金属,但具有低导热系数和惊人的大塞贝克系数。这些结果与最近对这些化合物的能带结构计算一致。用Co代替CeFe/sub 4/Sb/sub 12/中的Fe,增大Co:Fe原子比,Seebeck系数值增大。目前正在研究获得Co:Fe值高于1:3的n型电导率填充的方突石的可能性。对CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/原子组成和p型电导率的样品进行测量,在600/spl度/C时得到无量纲品质图ZT值为1.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High figure of merit in Ce-filled skutterudites
New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信