J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner
{"title":"在满是ce的skutterudites中有很高的功绩","authors":"J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner","doi":"10.1109/ICT.1996.553263","DOIUrl":null,"url":null,"abstract":"New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"High figure of merit in Ce-filled skutterudites\",\"authors\":\"J. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli, G. Meisner\",\"doi\":\"10.1109/ICT.1996.553263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.\",\"PeriodicalId\":447328,\"journal\":{\"name\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1996.553263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New thermoelectric materials with superior transport properties at high temperatures have been discovered. These materials are part of the large family of skutterudites, a class of compounds which have shown a good potential for thermoelectric applications. The composition of these novel materials, called filled skutterudites, is derived from the skutterudite crystal structure and can be represented by the formula LnT/sub 4/Pn/sub 12/ (Ln=rare earth, Th; T=Fe, Rn, Os, Co, Rh, Ir; Pn=P, As, Sb). In these compounds, the empty octants of the skutterudite structure which are formed in the TPn/sub 3/ (/spl sim/T/sub 4/Pn/sub 12/) framework are filled with a rare earth element. Some of these compositions, based on CeFe/sub 4/Sb/sub 12/, have been prepared by a combination of melting and powder metallurgy techniques and have shown exceptional thermoelectric properties in the 350-700/spl deg/C temperature range. At room temperature, CeFe/sub 4/Sb/sub 12/ behaves as a p-type semimetal, but with a low thermal conductivity and surprisingly large Seebeck coefficient. These results are consistent with some recent band structure calculations on these compounds. Replacing Fe with Co in CeFe/sub 4/Sb/sub 12/ and increasing the Co:Fe atomic ratio resulted in an increase in the Seebeck coefficient values. The possibility of obtaining n-type conductivity filled skutterudites for Co:Fe values higher than 1:3 is currently being investigated. Measurements on bulk samples with a CeFe/sub 3.5/Co/sub 0.5/Sb/sub 12/ atomic composition and p-type conductivity resulted in dimensionless figure of merit ZT values of 1.4 at 600/spl deg/C.