{"title":"行波热声发动机中换热器长度和孔隙率的影响","authors":"Accordance Ntimane, L. Tartibu","doi":"10.1109/ICMIMT59138.2023.10199998","DOIUrl":null,"url":null,"abstract":"In energy-intensive process industries, heat exchangers are frequently employed to increase the heat transfer coefficient and transfer heat between fluids without mixing or blending them. In thermo-acoustic systems, the main goal is to heat up and cool down heat exchangers positioned across the regenerator or the stack to reach a suitable onset temperature and generate a sound wave in a thermo-acoustic engine. Because of the impact of heat exchangers on the performance of thermo-acoustic systems, a more systematic investigation into the impact of its geometrical configuration would be insightful. A numerical model of a travelling-wave thermo-acoustic engine was developed and implemented within the software DELTAEC. Various simulations were performed. This result shows that the performance of a travelling-wave thermo-acoustic engine would improve by considering a relatively shorter cold heat exchanger having larger pores. A relatively longer hot heat exchanger having larger pores could enhance the performance of a thermo-acoustic engine.","PeriodicalId":286146,"journal":{"name":"2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Heat Exchanger Length and Porosity in a Travelling-Wave Thermo-Acoustic Engine\",\"authors\":\"Accordance Ntimane, L. Tartibu\",\"doi\":\"10.1109/ICMIMT59138.2023.10199998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In energy-intensive process industries, heat exchangers are frequently employed to increase the heat transfer coefficient and transfer heat between fluids without mixing or blending them. In thermo-acoustic systems, the main goal is to heat up and cool down heat exchangers positioned across the regenerator or the stack to reach a suitable onset temperature and generate a sound wave in a thermo-acoustic engine. Because of the impact of heat exchangers on the performance of thermo-acoustic systems, a more systematic investigation into the impact of its geometrical configuration would be insightful. A numerical model of a travelling-wave thermo-acoustic engine was developed and implemented within the software DELTAEC. Various simulations were performed. This result shows that the performance of a travelling-wave thermo-acoustic engine would improve by considering a relatively shorter cold heat exchanger having larger pores. A relatively longer hot heat exchanger having larger pores could enhance the performance of a thermo-acoustic engine.\",\"PeriodicalId\":286146,\"journal\":{\"name\":\"2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIMT59138.2023.10199998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIMT59138.2023.10199998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Heat Exchanger Length and Porosity in a Travelling-Wave Thermo-Acoustic Engine
In energy-intensive process industries, heat exchangers are frequently employed to increase the heat transfer coefficient and transfer heat between fluids without mixing or blending them. In thermo-acoustic systems, the main goal is to heat up and cool down heat exchangers positioned across the regenerator or the stack to reach a suitable onset temperature and generate a sound wave in a thermo-acoustic engine. Because of the impact of heat exchangers on the performance of thermo-acoustic systems, a more systematic investigation into the impact of its geometrical configuration would be insightful. A numerical model of a travelling-wave thermo-acoustic engine was developed and implemented within the software DELTAEC. Various simulations were performed. This result shows that the performance of a travelling-wave thermo-acoustic engine would improve by considering a relatively shorter cold heat exchanger having larger pores. A relatively longer hot heat exchanger having larger pores could enhance the performance of a thermo-acoustic engine.