使用条件随机场进行异常行为检测

Ben-Syuan Huang, Shih-Chung Hsu, Chung-Lin Huang
{"title":"使用条件随机场进行异常行为检测","authors":"Ben-Syuan Huang, Shih-Chung Hsu, Chung-Lin Huang","doi":"10.1109/ICALIP.2016.7846542","DOIUrl":null,"url":null,"abstract":"This paper proposes a real-time abnormal behavior detection using Conditional Random Fields(CRFs). A normal behavior can be characterized by the spatial and temporal features obtained from the video of human activities. The difficult of abnormal behavior detection is that human behavior varies in both motion and appearance. It is a continuous action stream, interspersed with transitional activities between abnormal and normal events. Here, we propose Bag of Words (BoWs) to describe the motion information as the observations. Then, we apply the CRFs and adaptive thresholding to identify the abnormal behaviors. Different from previous methods, our method can identify the undefined and unknown abnormal activities.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal behavior detection using Conditional Random Fields\",\"authors\":\"Ben-Syuan Huang, Shih-Chung Hsu, Chung-Lin Huang\",\"doi\":\"10.1109/ICALIP.2016.7846542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a real-time abnormal behavior detection using Conditional Random Fields(CRFs). A normal behavior can be characterized by the spatial and temporal features obtained from the video of human activities. The difficult of abnormal behavior detection is that human behavior varies in both motion and appearance. It is a continuous action stream, interspersed with transitional activities between abnormal and normal events. Here, we propose Bag of Words (BoWs) to describe the motion information as the observations. Then, we apply the CRFs and adaptive thresholding to identify the abnormal behaviors. Different from previous methods, our method can identify the undefined and unknown abnormal activities.\",\"PeriodicalId\":184170,\"journal\":{\"name\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALIP.2016.7846542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于条件随机场的实时异常行为检测方法。一个正常的行为可以通过从人类活动视频中获得的时空特征来表征。异常行为检测的难点在于人类行为在动作和外表上都是变化的。它是一个连续的动作流,在异常和正常事件之间穿插着过渡活动。在这里,我们提出了词袋(bow)来描述运动信息作为观测值。然后,我们应用CRFs和自适应阈值来识别异常行为。与以往的方法不同,我们的方法可以识别未定义和未知的异常活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal behavior detection using Conditional Random Fields
This paper proposes a real-time abnormal behavior detection using Conditional Random Fields(CRFs). A normal behavior can be characterized by the spatial and temporal features obtained from the video of human activities. The difficult of abnormal behavior detection is that human behavior varies in both motion and appearance. It is a continuous action stream, interspersed with transitional activities between abnormal and normal events. Here, we propose Bag of Words (BoWs) to describe the motion information as the observations. Then, we apply the CRFs and adaptive thresholding to identify the abnormal behaviors. Different from previous methods, our method can identify the undefined and unknown abnormal activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信