高角分辨率扩散图像配准

M. Afzali, E. Fatemizadeh, H. Soltanian-Zadeh
{"title":"高角分辨率扩散图像配准","authors":"M. Afzali, E. Fatemizadeh, H. Soltanian-Zadeh","doi":"10.1109/IRANIANMVIP.2013.6779985","DOIUrl":null,"url":null,"abstract":"Diffusion Tensor Imaging (DTI) is a common method for the investigation of brain white matter. In this method, it is assumed that diffusion of water molecules is Gaussian and so, it fails in fiber crossings where this assumption does not hold. High Angular Resolution Diffusion Imaging (HARDI) allows more accurate investigation of microstructures of the brain white matter; it can present fiber crossing in each voxel. HARDI contains complex orientation information of the fibers. Therefore, registration of these images is more complicated than the scalar images. In this paper, we propose a HARDI registration algorithm based on the feature vectors that are extracted from the Orientation Distribution Functions (ODFs) in each voxel. Hammer similarity measure is used to match the feature vectors and thin-plate spline (TPS) based registration is used for spatial registration of the skeleton and its neighbors. A re-orientation strategy is utilized to re-orient the ODFs after spatial registration. Finally, we evaluate our method based on the differences in principal diffusion direction and we will show that utilizing the skeleton as landmark in the registration results in accurate alignment of HARDI data.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High angular resolution diffusion image registration\",\"authors\":\"M. Afzali, E. Fatemizadeh, H. Soltanian-Zadeh\",\"doi\":\"10.1109/IRANIANMVIP.2013.6779985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion Tensor Imaging (DTI) is a common method for the investigation of brain white matter. In this method, it is assumed that diffusion of water molecules is Gaussian and so, it fails in fiber crossings where this assumption does not hold. High Angular Resolution Diffusion Imaging (HARDI) allows more accurate investigation of microstructures of the brain white matter; it can present fiber crossing in each voxel. HARDI contains complex orientation information of the fibers. Therefore, registration of these images is more complicated than the scalar images. In this paper, we propose a HARDI registration algorithm based on the feature vectors that are extracted from the Orientation Distribution Functions (ODFs) in each voxel. Hammer similarity measure is used to match the feature vectors and thin-plate spline (TPS) based registration is used for spatial registration of the skeleton and its neighbors. A re-orientation strategy is utilized to re-orient the ODFs after spatial registration. Finally, we evaluate our method based on the differences in principal diffusion direction and we will show that utilizing the skeleton as landmark in the registration results in accurate alignment of HARDI data.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6779985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弥散张量成像(DTI)是研究脑白质的常用方法。在这种方法中,假设水分子的扩散是高斯的,因此,在光纤交叉处,这种假设不成立,它就失败了。高角分辨率扩散成像(HARDI)可以更准确地研究脑白质的微观结构;它可以在每个体素中呈现纤维交叉。HARDI包含了复杂的纤维取向信息。因此,这些图像的配准比标量图像更复杂。在本文中,我们提出了一种基于从每个体素的方向分布函数(odf)中提取的特征向量的HARDI配准算法。采用锤击相似度测度对特征向量进行匹配,采用薄板样条配准方法对骨架及其相邻区域进行空间配准。在空间配准后,采用重定向策略对odf进行重定向。最后,我们基于主扩散方向的差异评估了我们的方法,我们将证明在配准中使用骨架作为地标可以精确对准HARDI数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High angular resolution diffusion image registration
Diffusion Tensor Imaging (DTI) is a common method for the investigation of brain white matter. In this method, it is assumed that diffusion of water molecules is Gaussian and so, it fails in fiber crossings where this assumption does not hold. High Angular Resolution Diffusion Imaging (HARDI) allows more accurate investigation of microstructures of the brain white matter; it can present fiber crossing in each voxel. HARDI contains complex orientation information of the fibers. Therefore, registration of these images is more complicated than the scalar images. In this paper, we propose a HARDI registration algorithm based on the feature vectors that are extracted from the Orientation Distribution Functions (ODFs) in each voxel. Hammer similarity measure is used to match the feature vectors and thin-plate spline (TPS) based registration is used for spatial registration of the skeleton and its neighbors. A re-orientation strategy is utilized to re-orient the ODFs after spatial registration. Finally, we evaluate our method based on the differences in principal diffusion direction and we will show that utilizing the skeleton as landmark in the registration results in accurate alignment of HARDI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信