通过模拟短伽马射线暴的速率计算双中子星合并速率

D. Paul
{"title":"通过模拟短伽马射线暴的速率计算双中子星合并速率","authors":"D. Paul","doi":"10.22323/1.357.0059","DOIUrl":null,"url":null,"abstract":"Gamma-ray bursts (GRBs) are transients associated with the formation of compact objects. It had long been theorised that mergers of two neutron stars leading to the formation of a heavier neutron star or a black hole are the progenitors of the so-called ‘short’ GRBs. The merger is associated with the emission of gravitational waves (GWs) that are detectable on earth, and this association was proved empirically with the detection of a short GRB and other electromagnetic emission of the GW source 170817. It is important to make statistical predictions of the number of sGRBs detectable by a GRB monitor in the sky. Here I present predictions of the event rate of the AstroSat-CZTI via careful studies of the luminosity function of short GRBs. Using the maximum distance to which the GW networks are sensitive in the past, present and future runs, stringent lower limits are placed on the rate of binary neutron star mergers (BNSMs). It is shown that the number will go up significantly in the next observing runs of aLIGO/VIRGO. Comparison of the short GRB rate with the BNSM rate calculated independently from the single source statistics of GW170817 reveals the presence of a slight tension that can have significant implications on the physics of the merger ejecta; however the scenario that each BNSM indeed produces a short GRB, cannot be ruled out.","PeriodicalId":257968,"journal":{"name":"Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019)","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The binary neutron star merger rate via the modelled rate of short gamma-ray bursts\",\"authors\":\"D. Paul\",\"doi\":\"10.22323/1.357.0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gamma-ray bursts (GRBs) are transients associated with the formation of compact objects. It had long been theorised that mergers of two neutron stars leading to the formation of a heavier neutron star or a black hole are the progenitors of the so-called ‘short’ GRBs. The merger is associated with the emission of gravitational waves (GWs) that are detectable on earth, and this association was proved empirically with the detection of a short GRB and other electromagnetic emission of the GW source 170817. It is important to make statistical predictions of the number of sGRBs detectable by a GRB monitor in the sky. Here I present predictions of the event rate of the AstroSat-CZTI via careful studies of the luminosity function of short GRBs. Using the maximum distance to which the GW networks are sensitive in the past, present and future runs, stringent lower limits are placed on the rate of binary neutron star mergers (BNSMs). It is shown that the number will go up significantly in the next observing runs of aLIGO/VIRGO. Comparison of the short GRB rate with the BNSM rate calculated independently from the single source statistics of GW170817 reveals the presence of a slight tension that can have significant implications on the physics of the merger ejecta; however the scenario that each BNSM indeed produces a short GRB, cannot be ruled out.\",\"PeriodicalId\":257968,\"journal\":{\"name\":\"Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019)\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.357.0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.357.0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伽玛射线暴(GRBs)是与致密天体形成有关的瞬变现象。长期以来,人们一直认为,两颗中子星的合并会形成一颗更重的中子星或黑洞,这就是所谓的“短”伽马射线暴的前身。这种合并与地球上可探测到的引力波(GWs)的发射有关,这种联系通过探测到短GRB和GW源170817的其他电磁发射得到了经验证明。对天空中GRB监测器探测到的sgrb数量进行统计预测是很重要的。在这里,我通过仔细研究短伽马射线爆发的光度函数来预测AstroSat-CZTI的事件率。利用GW网络在过去、现在和未来运行中敏感的最大距离,对双中子星合并(bnsm)的速率设定了严格的下限。结果表明,在接下来的aLIGO/VIRGO观测中,这一数字将显著上升。对比GW170817的短GRB速率和从单源统计数据独立计算的BNSM速率,发现存在轻微的张力,这可能对合并喷射的物理特性有重要影响;然而,不能排除每个BNSM确实产生短GRB的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The binary neutron star merger rate via the modelled rate of short gamma-ray bursts
Gamma-ray bursts (GRBs) are transients associated with the formation of compact objects. It had long been theorised that mergers of two neutron stars leading to the formation of a heavier neutron star or a black hole are the progenitors of the so-called ‘short’ GRBs. The merger is associated with the emission of gravitational waves (GWs) that are detectable on earth, and this association was proved empirically with the detection of a short GRB and other electromagnetic emission of the GW source 170817. It is important to make statistical predictions of the number of sGRBs detectable by a GRB monitor in the sky. Here I present predictions of the event rate of the AstroSat-CZTI via careful studies of the luminosity function of short GRBs. Using the maximum distance to which the GW networks are sensitive in the past, present and future runs, stringent lower limits are placed on the rate of binary neutron star mergers (BNSMs). It is shown that the number will go up significantly in the next observing runs of aLIGO/VIRGO. Comparison of the short GRB rate with the BNSM rate calculated independently from the single source statistics of GW170817 reveals the presence of a slight tension that can have significant implications on the physics of the merger ejecta; however the scenario that each BNSM indeed produces a short GRB, cannot be ruled out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信