n值R0命题逻辑的分级推理方法

Qian Lan, Teng Ma
{"title":"n值R0命题逻辑的分级推理方法","authors":"Qian Lan, Teng Ma","doi":"10.1109/CSAE.2011.5952710","DOIUrl":null,"url":null,"abstract":"The concept of pure truth degrees of propositions in the n-valued R0 logic system is introduced by means of infinite product of uniformly distributed probability spaces of cardinal n. Similarity degrees among formulas are proposed and a pseudo-metric is defined therefrom on the set of formulas. In the end, two kinds of approximate reasoning scheme are given and hence another possible framework suitable for developing graded reasoning in n-valued R0 propositional logic is established.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graded method for reasoning about n-valued R0 propositional logic\",\"authors\":\"Qian Lan, Teng Ma\",\"doi\":\"10.1109/CSAE.2011.5952710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of pure truth degrees of propositions in the n-valued R0 logic system is introduced by means of infinite product of uniformly distributed probability spaces of cardinal n. Similarity degrees among formulas are proposed and a pseudo-metric is defined therefrom on the set of formulas. In the end, two kinds of approximate reasoning scheme are given and hence another possible framework suitable for developing graded reasoning in n-valued R0 propositional logic is established.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用基数为n的均匀分布概率空间的无限积,引入了n值R0逻辑系统中命题的纯真度概念,提出了公式间的相似度,并由此在公式集上定义了一个伪度量。最后,给出了两种近似推理方案,从而建立了另一种适合于在n值R0命题逻辑中发展分级推理的可能框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graded method for reasoning about n-valued R0 propositional logic
The concept of pure truth degrees of propositions in the n-valued R0 logic system is introduced by means of infinite product of uniformly distributed probability spaces of cardinal n. Similarity degrees among formulas are proposed and a pseudo-metric is defined therefrom on the set of formulas. In the end, two kinds of approximate reasoning scheme are given and hence another possible framework suitable for developing graded reasoning in n-valued R0 propositional logic is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信