Ankit Mohan, J. Tumblin, Bobby Bodenheimer, C. Grimm, Reynold J. Bailey
{"title":"桌面计算照明实用数码摄影","authors":"Ankit Mohan, J. Tumblin, Bobby Bodenheimer, C. Grimm, Reynold J. Bailey","doi":"10.1145/1281500.1281503","DOIUrl":null,"url":null,"abstract":"We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure, and use a camera to quickly record low-resolution photos as the light scans the box interior. Optimization guided by interactive user sketching selects a small set of frames whose weighted sum best matches the target image. The system then repeats the lighting used in each of these frames, and constructs a high resolution result from re-photographed basis images. Unlike previous image-based relighting efforts, our method requires only one light source, yet can achieve high resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a hand-held light, and may be suitable for battery-powered, field photography equipment that fits in a backpack.","PeriodicalId":184610,"journal":{"name":"ACM SIGGRAPH 2007 courses","volume":"21 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Table-top computed lighting for practical digital photography\",\"authors\":\"Ankit Mohan, J. Tumblin, Bobby Bodenheimer, C. Grimm, Reynold J. Bailey\",\"doi\":\"10.1145/1281500.1281503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure, and use a camera to quickly record low-resolution photos as the light scans the box interior. Optimization guided by interactive user sketching selects a small set of frames whose weighted sum best matches the target image. The system then repeats the lighting used in each of these frames, and constructs a high resolution result from re-photographed basis images. Unlike previous image-based relighting efforts, our method requires only one light source, yet can achieve high resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a hand-held light, and may be suitable for battery-powered, field photography equipment that fits in a backpack.\",\"PeriodicalId\":184610,\"journal\":{\"name\":\"ACM SIGGRAPH 2007 courses\",\"volume\":\"21 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2007 courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1281500.1281503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2007 courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1281500.1281503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Table-top computed lighting for practical digital photography
We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure, and use a camera to quickly record low-resolution photos as the light scans the box interior. Optimization guided by interactive user sketching selects a small set of frames whose weighted sum best matches the target image. The system then repeats the lighting used in each of these frames, and constructs a high resolution result from re-photographed basis images. Unlike previous image-based relighting efforts, our method requires only one light source, yet can achieve high resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a hand-held light, and may be suitable for battery-powered, field photography equipment that fits in a backpack.