复值二值压缩感知

I. Stanković, M. Brajović, M. Daković, L. Stanković
{"title":"复值二值压缩感知","authors":"I. Stanković, M. Brajović, M. Daković, L. Stanković","doi":"10.1109/TELFOR.2018.8612043","DOIUrl":null,"url":null,"abstract":"One-bit (or binary) compressive sensing (CS) is a relatively new idea in the theory of sparse signal reconstruction. It is based on using only the sign of the available measurements for the signal recovery. In this paper, we analyze the one-bit CS concepts on complex-valued random Gaussian measurement matrices. The signal is reconstructed using an iterative hard thresholding algorithm, modified for the complex-valued binary measurements. The considered CS approach is particularly suitable for hardware realizations. The reconstruction performance is validated numerically, and compared with the traditional CS reconstruction based on quantized digital measurements.","PeriodicalId":229131,"journal":{"name":"2018 26th Telecommunications Forum (TELFOR)","volume":"32 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Complex-Valued Binary Compressive Sensing\",\"authors\":\"I. Stanković, M. Brajović, M. Daković, L. Stanković\",\"doi\":\"10.1109/TELFOR.2018.8612043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-bit (or binary) compressive sensing (CS) is a relatively new idea in the theory of sparse signal reconstruction. It is based on using only the sign of the available measurements for the signal recovery. In this paper, we analyze the one-bit CS concepts on complex-valued random Gaussian measurement matrices. The signal is reconstructed using an iterative hard thresholding algorithm, modified for the complex-valued binary measurements. The considered CS approach is particularly suitable for hardware realizations. The reconstruction performance is validated numerically, and compared with the traditional CS reconstruction based on quantized digital measurements.\",\"PeriodicalId\":229131,\"journal\":{\"name\":\"2018 26th Telecommunications Forum (TELFOR)\",\"volume\":\"32 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2018.8612043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2018.8612043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在稀疏信号重构理论中,一比特压缩感知(CS)是一个相对较新的思想。它基于仅使用信号恢复的可用测量值的符号。本文分析了复值随机高斯测量矩阵上的位CS概念。使用迭代硬阈值算法重建信号,并针对复值二值测量进行了修改。所考虑的CS方法特别适合硬件实现。数值验证了重建性能,并与传统的基于量化数字测量的CS重建进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex-Valued Binary Compressive Sensing
One-bit (or binary) compressive sensing (CS) is a relatively new idea in the theory of sparse signal reconstruction. It is based on using only the sign of the available measurements for the signal recovery. In this paper, we analyze the one-bit CS concepts on complex-valued random Gaussian measurement matrices. The signal is reconstructed using an iterative hard thresholding algorithm, modified for the complex-valued binary measurements. The considered CS approach is particularly suitable for hardware realizations. The reconstruction performance is validated numerically, and compared with the traditional CS reconstruction based on quantized digital measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信