基于GA-ML-PDA的无源多基地雷达航迹初始化(海报)

Yun-fei Guo, Zhuoer Tian, Dongliang Peng, Han Shentu, TongJing Sun, Meng-fan Xue
{"title":"基于GA-ML-PDA的无源多基地雷达航迹初始化(海报)","authors":"Yun-fei Guo, Zhuoer Tian, Dongliang Peng, Han Shentu, TongJing Sun, Meng-fan Xue","doi":"10.23919/fusion43075.2019.9011372","DOIUrl":null,"url":null,"abstract":"In order to address the problem of track initialization in the presence of clutter with passive multistatic radar, a genetic algorithm based maximum likelihood probabilistic data association (GA-ML-PDA) algorithm is proposed in this paper. First, the log-likelihood ratio (LLR) function is established from multiframe measurements. Then, the track is initialized by maximizing the LLR function with the genetic algorithm (GA). Last, the extreme value theory (EVT) is used for the track acceptance test. Simulation results verify the effectiveness of the algorithm.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GA-ML-PDA Based Track Initialization with Passive Multistatic Radar (Poster)\",\"authors\":\"Yun-fei Guo, Zhuoer Tian, Dongliang Peng, Han Shentu, TongJing Sun, Meng-fan Xue\",\"doi\":\"10.23919/fusion43075.2019.9011372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the problem of track initialization in the presence of clutter with passive multistatic radar, a genetic algorithm based maximum likelihood probabilistic data association (GA-ML-PDA) algorithm is proposed in this paper. First, the log-likelihood ratio (LLR) function is established from multiframe measurements. Then, the track is initialized by maximizing the LLR function with the genetic algorithm (GA). Last, the extreme value theory (EVT) is used for the track acceptance test. Simulation results verify the effectiveness of the algorithm.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决无源多基地雷达在杂波存在下的航迹初始化问题,提出了一种基于遗传算法的最大似然概率数据关联(GA-ML-PDA)算法。首先,从多帧测量中建立对数似然比函数;然后,通过遗传算法(GA)最大化LLR函数来初始化轨迹。最后,将极值理论应用于轨道验收试验。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GA-ML-PDA Based Track Initialization with Passive Multistatic Radar (Poster)
In order to address the problem of track initialization in the presence of clutter with passive multistatic radar, a genetic algorithm based maximum likelihood probabilistic data association (GA-ML-PDA) algorithm is proposed in this paper. First, the log-likelihood ratio (LLR) function is established from multiframe measurements. Then, the track is initialized by maximizing the LLR function with the genetic algorithm (GA). Last, the extreme value theory (EVT) is used for the track acceptance test. Simulation results verify the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信