一种新的散射增强相关特征学习方法

Shuzhi Su, Jun Xie, Yanmin Zhu, Xingzhu Liang
{"title":"一种新的散射增强相关特征学习方法","authors":"Shuzhi Su, Jun Xie, Yanmin Zhu, Xingzhu Liang","doi":"10.1109/ICAICA52286.2021.9497991","DOIUrl":null,"url":null,"abstract":"Canonical Correlation Analysis (CCA) is an essential algorithm in the feature learning field. However, it does not utilize supervised information, and it failed to solve nonlinear problems. Therefore, this paper proposes a novel feature learning algorithm called Scatter-enhanced Canonical Correlation Analysis (SeCCA). This paper integrates the internal structure information and supervised information of the data and embeds them into the canonical correlation framework. The excellent image recognition performance of this algorithm can be demonstrated by extensive experimental results.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Scatter-enhanced Correlation Feature Learning Method\",\"authors\":\"Shuzhi Su, Jun Xie, Yanmin Zhu, Xingzhu Liang\",\"doi\":\"10.1109/ICAICA52286.2021.9497991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical Correlation Analysis (CCA) is an essential algorithm in the feature learning field. However, it does not utilize supervised information, and it failed to solve nonlinear problems. Therefore, this paper proposes a novel feature learning algorithm called Scatter-enhanced Canonical Correlation Analysis (SeCCA). This paper integrates the internal structure information and supervised information of the data and embeds them into the canonical correlation framework. The excellent image recognition performance of this algorithm can be demonstrated by extensive experimental results.\",\"PeriodicalId\":121979,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA52286.2021.9497991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9497991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

典型相关分析(CCA)是特征学习领域的一种重要算法。然而,它没有利用监督信息,不能解决非线性问题。因此,本文提出了一种新的特征学习算法——散射增强典型相关分析(SeCCA)。本文将数据的内部结构信息和监督信息整合到典型关联框架中。大量的实验结果证明了该算法具有良好的图像识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Scatter-enhanced Correlation Feature Learning Method
Canonical Correlation Analysis (CCA) is an essential algorithm in the feature learning field. However, it does not utilize supervised information, and it failed to solve nonlinear problems. Therefore, this paper proposes a novel feature learning algorithm called Scatter-enhanced Canonical Correlation Analysis (SeCCA). This paper integrates the internal structure information and supervised information of the data and embeds them into the canonical correlation framework. The excellent image recognition performance of this algorithm can be demonstrated by extensive experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信