TCAD增强ML算法在AlGaN/GaN hemt建模中的比较分析

Shivansh Awasthi, P. Kaushik, Prof Vikas Kumar, Ankur Gupta
{"title":"TCAD增强ML算法在AlGaN/GaN hemt建模中的比较分析","authors":"Shivansh Awasthi, P. Kaushik, Prof Vikas Kumar, Ankur Gupta","doi":"10.1109/DELCON57910.2023.10127296","DOIUrl":null,"url":null,"abstract":"In this study, a computer-aided design (TCAD) supported machine learning framework is built to predict the intrinsic parameters of GaN HEMT, such as V<inf>TH</inf> (Threshold Voltage) and g<inf>m</inf> (Transconductance). TCAD was used to generate the training data set constituting the I<inf>D</inf>-V<inf>GS</inf> characteristics of the GaN HEMT. This is achieved by changing multiple input parameters (e.g. the Al mole fraction (x), gate metal work function, AlGaN barrier thickness and gate length). We deployed numerous ML algorithms and an ANN (artificial neural network) to predict the V<inf>TH</inf> and g<inf>m</inf> of GaN HEMT. We compared the performance of these ML algorithms and found that the boosting and ensemble algorithms provide better results in terms of accuracy. We showed that Random Forest and Gradient Boost were most effective in predicting V<inf>TH</inf> with an R<sup>2</sup> value of 0.99 each, and for g<inf>m</inf> prediction, Gradient Boost was most effective with an R<sup>2</sup> of 0.92.","PeriodicalId":193577,"journal":{"name":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of TCAD augmented ML Algorithms in modeling of AlGaN/GaN HEMTs\",\"authors\":\"Shivansh Awasthi, P. Kaushik, Prof Vikas Kumar, Ankur Gupta\",\"doi\":\"10.1109/DELCON57910.2023.10127296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a computer-aided design (TCAD) supported machine learning framework is built to predict the intrinsic parameters of GaN HEMT, such as V<inf>TH</inf> (Threshold Voltage) and g<inf>m</inf> (Transconductance). TCAD was used to generate the training data set constituting the I<inf>D</inf>-V<inf>GS</inf> characteristics of the GaN HEMT. This is achieved by changing multiple input parameters (e.g. the Al mole fraction (x), gate metal work function, AlGaN barrier thickness and gate length). We deployed numerous ML algorithms and an ANN (artificial neural network) to predict the V<inf>TH</inf> and g<inf>m</inf> of GaN HEMT. We compared the performance of these ML algorithms and found that the boosting and ensemble algorithms provide better results in terms of accuracy. We showed that Random Forest and Gradient Boost were most effective in predicting V<inf>TH</inf> with an R<sup>2</sup> value of 0.99 each, and for g<inf>m</inf> prediction, Gradient Boost was most effective with an R<sup>2</sup> of 0.92.\",\"PeriodicalId\":193577,\"journal\":{\"name\":\"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DELCON57910.2023.10127296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELCON57910.2023.10127296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,建立了一个计算机辅助设计(TCAD)支持的机器学习框架来预测GaN HEMT的内在参数,如VTH(阈值电压)和gm(跨导)。使用TCAD生成构成GaN HEMT ID-VGS特征的训练数据集。这是通过改变多个输入参数(例如Al摩尔分数(x),栅极金属功函数,AlGaN势垒厚度和栅极长度)来实现的。我们部署了许多ML算法和ANN(人工神经网络)来预测GaN HEMT的VTH和gm。我们比较了这些ML算法的性能,发现增强和集成算法在准确性方面提供了更好的结果。我们发现Random Forest和Gradient Boost在预测VTH方面最有效,R2均为0.99,而对于gm预测,Gradient Boost最有效,R2为0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of TCAD augmented ML Algorithms in modeling of AlGaN/GaN HEMTs
In this study, a computer-aided design (TCAD) supported machine learning framework is built to predict the intrinsic parameters of GaN HEMT, such as VTH (Threshold Voltage) and gm (Transconductance). TCAD was used to generate the training data set constituting the ID-VGS characteristics of the GaN HEMT. This is achieved by changing multiple input parameters (e.g. the Al mole fraction (x), gate metal work function, AlGaN barrier thickness and gate length). We deployed numerous ML algorithms and an ANN (artificial neural network) to predict the VTH and gm of GaN HEMT. We compared the performance of these ML algorithms and found that the boosting and ensemble algorithms provide better results in terms of accuracy. We showed that Random Forest and Gradient Boost were most effective in predicting VTH with an R2 value of 0.99 each, and for gm prediction, Gradient Boost was most effective with an R2 of 0.92.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信