用混合MPI+PGAS编程模型设计可扩展的核外排序

Jithin Jose, S. Potluri, H. Subramoni, Xiaoyi Lu, Khaled Hamidouche, K. Schulz, H. Sundar, D. Panda
{"title":"用混合MPI+PGAS编程模型设计可扩展的核外排序","authors":"Jithin Jose, S. Potluri, H. Subramoni, Xiaoyi Lu, Khaled Hamidouche, K. Schulz, H. Sundar, D. Panda","doi":"10.1145/2676870.2676880","DOIUrl":null,"url":null,"abstract":"While Hadoop holds the current Sort Benchmark record, previous research has shown that MPI-based solutions can deliver similar performance. However, most existing MPI-based designs rely on two-sided communication semantics. The emerging Partitioned Global Address Space (PGAS) programming model presents a flexible way to express parallelism for data-intensive applications. However, not all portions of the data analytics applications are amenable to conversion using PGAS models. In this study, we propose a novel design of the out-of-core, k-way parallel sort algorithm that takes advantage of the features of both MPI and OpenSHMEM PGAS models. To the best of our knowledge, this is the first design of any data intensive computing application using Hybrid MPI + PGAS models. Our experimental evaluation indicates that our proposed framework outperforms existing MPI-based design by up to 45% at 8,192 processes. It also achieves 7X improvement over Hadoop-based sort using the same amount of resources at 1,024 cores.","PeriodicalId":245693,"journal":{"name":"International Conference on Partitioned Global Address Space Programming Models","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Designing Scalable Out-of-core Sorting with Hybrid MPI+PGAS Programming Models\",\"authors\":\"Jithin Jose, S. Potluri, H. Subramoni, Xiaoyi Lu, Khaled Hamidouche, K. Schulz, H. Sundar, D. Panda\",\"doi\":\"10.1145/2676870.2676880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Hadoop holds the current Sort Benchmark record, previous research has shown that MPI-based solutions can deliver similar performance. However, most existing MPI-based designs rely on two-sided communication semantics. The emerging Partitioned Global Address Space (PGAS) programming model presents a flexible way to express parallelism for data-intensive applications. However, not all portions of the data analytics applications are amenable to conversion using PGAS models. In this study, we propose a novel design of the out-of-core, k-way parallel sort algorithm that takes advantage of the features of both MPI and OpenSHMEM PGAS models. To the best of our knowledge, this is the first design of any data intensive computing application using Hybrid MPI + PGAS models. Our experimental evaluation indicates that our proposed framework outperforms existing MPI-based design by up to 45% at 8,192 processes. It also achieves 7X improvement over Hadoop-based sort using the same amount of resources at 1,024 cores.\",\"PeriodicalId\":245693,\"journal\":{\"name\":\"International Conference on Partitioned Global Address Space Programming Models\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Partitioned Global Address Space Programming Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676870.2676880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Partitioned Global Address Space Programming Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676870.2676880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虽然Hadoop保持着当前的Sort Benchmark记录,但之前的研究表明,基于mpi的解决方案可以提供类似的性能。然而,大多数现有的基于mpi的设计依赖于双边通信语义。新兴的分区全局地址空间(PGAS)编程模型提供了一种灵活的方式来表达数据密集型应用程序的并行性。然而,并非数据分析应用程序的所有部分都可以使用PGAS模型进行转换。在本研究中,我们提出了一种新颖的外核k路并行排序算法设计,该算法利用了MPI和OpenSHMEM PGAS模型的特点。据我们所知,这是第一个使用混合MPI + PGAS模型的数据密集型计算应用程序的设计。我们的实验评估表明,我们提出的框架在8,192个进程中比现有的基于mpi的设计高出45%。与基于hadoop的排序相比,使用相同数量的1,024核资源,它也实现了7倍的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Scalable Out-of-core Sorting with Hybrid MPI+PGAS Programming Models
While Hadoop holds the current Sort Benchmark record, previous research has shown that MPI-based solutions can deliver similar performance. However, most existing MPI-based designs rely on two-sided communication semantics. The emerging Partitioned Global Address Space (PGAS) programming model presents a flexible way to express parallelism for data-intensive applications. However, not all portions of the data analytics applications are amenable to conversion using PGAS models. In this study, we propose a novel design of the out-of-core, k-way parallel sort algorithm that takes advantage of the features of both MPI and OpenSHMEM PGAS models. To the best of our knowledge, this is the first design of any data intensive computing application using Hybrid MPI + PGAS models. Our experimental evaluation indicates that our proposed framework outperforms existing MPI-based design by up to 45% at 8,192 processes. It also achieves 7X improvement over Hadoop-based sort using the same amount of resources at 1,024 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信