球面上扩散的“高斯”

Abhijit Ghosh, J. Samuel, S. Sinha
{"title":"球面上扩散的“高斯”","authors":"Abhijit Ghosh, J. Samuel, S. Sinha","doi":"10.1209/0295-5075/98/30003","DOIUrl":null,"url":null,"abstract":"We present an analytical closed form expression, which gives a good approximate propagator for diffusion on the sphere. Our formula is the spherical counterpart of the Gaussian propagator for diffusion on the plane. While the analytical formula is derived using saddle point methods for short times, it works well even for intermediate times. Our formula goes beyond conventional “short time heat kernel expansions\" in that it is nonperturbative in the spatial coordinate, a feature that is ideal for studying large deviations. Our work suggests a new and efficient algorithm for numerical integration of the diffusion equation on a sphere. We perform Monte Carlo simulations to compare the numerical efficiency of the new algorithm with the older Gaussian one.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"A “Gaussian” for diffusion on the sphere\",\"authors\":\"Abhijit Ghosh, J. Samuel, S. Sinha\",\"doi\":\"10.1209/0295-5075/98/30003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an analytical closed form expression, which gives a good approximate propagator for diffusion on the sphere. Our formula is the spherical counterpart of the Gaussian propagator for diffusion on the plane. While the analytical formula is derived using saddle point methods for short times, it works well even for intermediate times. Our formula goes beyond conventional “short time heat kernel expansions\\\" in that it is nonperturbative in the spatial coordinate, a feature that is ideal for studying large deviations. Our work suggests a new and efficient algorithm for numerical integration of the diffusion equation on a sphere. We perform Monte Carlo simulations to compare the numerical efficiency of the new algorithm with the older Gaussian one.\",\"PeriodicalId\":171520,\"journal\":{\"name\":\"EPL (Europhysics Letters)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL (Europhysics Letters)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/98/30003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/98/30003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们给出了一个解析的闭形式表达式,它给出了球上扩散的一个很好的近似传播算子。我们的公式是平面上扩散的高斯传播算子的球面对应。虽然解析公式是在短时间内使用鞍点法推导出来的,但即使在中间时间也能很好地工作。我们的公式超越了传统的“短时热核展开”,因为它在空间坐标上是非摄动的,这是研究大偏差的理想特征。我们的工作为球面上扩散方程的数值积分提供了一种新的、有效的算法。我们通过蒙特卡罗模拟来比较新算法与旧高斯算法的数值效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A “Gaussian” for diffusion on the sphere
We present an analytical closed form expression, which gives a good approximate propagator for diffusion on the sphere. Our formula is the spherical counterpart of the Gaussian propagator for diffusion on the plane. While the analytical formula is derived using saddle point methods for short times, it works well even for intermediate times. Our formula goes beyond conventional “short time heat kernel expansions" in that it is nonperturbative in the spatial coordinate, a feature that is ideal for studying large deviations. Our work suggests a new and efficient algorithm for numerical integration of the diffusion equation on a sphere. We perform Monte Carlo simulations to compare the numerical efficiency of the new algorithm with the older Gaussian one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信