基于Parker变换的oacf保持运算

Geyang Wang, Qi Wang
{"title":"基于Parker变换的oacf保持运算","authors":"Geyang Wang, Qi Wang","doi":"10.1109/IWSDA46143.2019.8966094","DOIUrl":null,"url":null,"abstract":"Binary sequences with low odd-periodic correlation magnitudes have found important applications in communication systems. It is well known that the three operations, negacyclic shift, decimation, and negation, preserve the odd-periodic autocorrelation function (OACF) in general. In this paper, we define a new operation based on Parker’s transformation, which also preserves the OACF of binary sequences. This enables us to classify Parker’s 16 cases into 8 ones, and may possibly further allow to classify all constructions based on Parker’s transformation.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An OACF-Preserving Operation Based on Parker’s Transformation\",\"authors\":\"Geyang Wang, Qi Wang\",\"doi\":\"10.1109/IWSDA46143.2019.8966094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary sequences with low odd-periodic correlation magnitudes have found important applications in communication systems. It is well known that the three operations, negacyclic shift, decimation, and negation, preserve the odd-periodic autocorrelation function (OACF) in general. In this paper, we define a new operation based on Parker’s transformation, which also preserves the OACF of binary sequences. This enables us to classify Parker’s 16 cases into 8 ones, and may possibly further allow to classify all constructions based on Parker’s transformation.\",\"PeriodicalId\":326214,\"journal\":{\"name\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA46143.2019.8966094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有低奇周期相关量的二值序列在通信系统中有着重要的应用。众所周知,三种操作,即负循环移位、抽取和取反,通常可以保留奇周期自相关函数(OACF)。本文在Parker变换的基础上定义了一种新的运算,该运算保留了二值序列的OACF。这使我们能够将Parker的16个案例分为8个,并可能进一步允许根据Parker的转换对所有结构进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An OACF-Preserving Operation Based on Parker’s Transformation
Binary sequences with low odd-periodic correlation magnitudes have found important applications in communication systems. It is well known that the three operations, negacyclic shift, decimation, and negation, preserve the odd-periodic autocorrelation function (OACF) in general. In this paper, we define a new operation based on Parker’s transformation, which also preserves the OACF of binary sequences. This enables us to classify Parker’s 16 cases into 8 ones, and may possibly further allow to classify all constructions based on Parker’s transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信