K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto
{"title":"以空气为传热流体的室温磁制冷机的改进","authors":"K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto","doi":"10.1109/THETA.2008.5167187","DOIUrl":null,"url":null,"abstract":"In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improvement of room temperature magnetic refrigerator using air as heat transfer fluid\",\"authors\":\"K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto\",\"doi\":\"10.1109/THETA.2008.5167187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.\",\"PeriodicalId\":414963,\"journal\":{\"name\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THETA.2008.5167187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5167187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of room temperature magnetic refrigerator using air as heat transfer fluid
In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.