以空气为传热流体的室温磁制冷机的改进

K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto
{"title":"以空气为传热流体的室温磁制冷机的改进","authors":"K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto","doi":"10.1109/THETA.2008.5167187","DOIUrl":null,"url":null,"abstract":"In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improvement of room temperature magnetic refrigerator using air as heat transfer fluid\",\"authors\":\"K. Nakamura, T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto\",\"doi\":\"10.1109/THETA.2008.5167187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.\",\"PeriodicalId\":414963,\"journal\":{\"name\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THETA.2008.5167187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5167187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了阐明以空气为传热介质的室温磁制冷机的制冷特性,提高制冷性能,对有源磁蓄热器的传热特性进行了实验和分析研究。目标系统的基本组成部分是磁路、测试部分、流体供应系统和相关仪器。球形钆颗粒作为磁性工质填充在试验段中。测量和计算了空气- amr在几种工况下的温度分布。此外,为了与Air-AMR进行比较,对Water-AMR进行了研究。结果表明,AMR循环对两种传热流体的制冷性能都有很好的改善作用,因为它实现了热端与冷端之间的温度跨度的增大。此外,与水- amr制冷机相比,空气- amr制冷机的冷却性能需要较大的空气流量。研究还表明,传热流体的热物理性质对AMR制冷机的制冷特性有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of room temperature magnetic refrigerator using air as heat transfer fluid
In order to elucidate the cooling characteristics and to improve the cooling performance of a room temperature magnetic refrigerator using air as a heat transfer fluid, experimental and analytical study concerned with the heat transfer characteristics of an active magnetic regenerator (AMR) are conducted. The basic components of the target system are a magnetic circuit, a test section, a fluid supplying system and an associated instrumentation. Spherical gadolinium particles are packed in the test section as a magnetic working substance. Temperature profiles under several operating conditions for the Air-AMR are measured and calculated. Also, those for the Water-AMR are investigated in order to compare with the Air-AMR. The results show that the AMR cycle is very effective for improvement of the cooling performance of a room-temperature magnetic refrigerator for both heat transfer fluids, because increase in the temperature span between the hot-end and the cold-end due to regeneration is realized. Furthermore, it is revealed that a high flow rate of air is necessary in order to improve the cooling performance of the Air-AMR refrigerator, compared with the case of the Water-AMR. It is also shown that thermophysical properties of the heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信