信息约束下的交互推理

Jayadev Acharya, C. Canonne, Yuhan Liu, Ziteng Sun, Himanshu Tyagi
{"title":"信息约束下的交互推理","authors":"Jayadev Acharya, C. Canonne, Yuhan Liu, Ziteng Sun, Himanshu Tyagi","doi":"10.1109/ISIT45174.2021.9518069","DOIUrl":null,"url":null,"abstract":"We consider the problem of distributed estimation and testing of discrete distributions under local information constraints that include communication and privacy as special cases. Our main result is a unified method that establishes tight bounds for interactive protocols under both the constraints and both the problems. Our main technical contribution is an average information bound which connects learning and testing and handles correlations due to interactivity. While we establish that for learning and testing under both the constraints above, interactivity does not help, we also illustrate a natural family of “leaky query” local constraints under which interactive protocols strictly outperform the noninteractive ones for identity testing.","PeriodicalId":299118,"journal":{"name":"2021 IEEE International Symposium on Information Theory (ISIT)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interactive Inference under Information Constraints\",\"authors\":\"Jayadev Acharya, C. Canonne, Yuhan Liu, Ziteng Sun, Himanshu Tyagi\",\"doi\":\"10.1109/ISIT45174.2021.9518069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of distributed estimation and testing of discrete distributions under local information constraints that include communication and privacy as special cases. Our main result is a unified method that establishes tight bounds for interactive protocols under both the constraints and both the problems. Our main technical contribution is an average information bound which connects learning and testing and handles correlations due to interactivity. While we establish that for learning and testing under both the constraints above, interactivity does not help, we also illustrate a natural family of “leaky query” local constraints under which interactive protocols strictly outperform the noninteractive ones for identity testing.\",\"PeriodicalId\":299118,\"journal\":{\"name\":\"2021 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT45174.2021.9518069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT45174.2021.9518069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了局部信息约束下离散分布的分布估计和测试问题,其中包括通信和隐私作为特例。我们的主要成果是一个统一的方法,在约束和问题下为交互协议建立严密的边界。我们的主要技术贡献是一个连接学习和测试的平均信息边界,并处理由于交互性而产生的相关性。虽然我们确定了在上述两种约束下的学习和测试,但交互性并没有帮助,我们还说明了一组自然的“泄漏查询”本地约束,在这些约束下,交互协议在身份测试方面严格优于非交互协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Inference under Information Constraints
We consider the problem of distributed estimation and testing of discrete distributions under local information constraints that include communication and privacy as special cases. Our main result is a unified method that establishes tight bounds for interactive protocols under both the constraints and both the problems. Our main technical contribution is an average information bound which connects learning and testing and handles correlations due to interactivity. While we establish that for learning and testing under both the constraints above, interactivity does not help, we also illustrate a natural family of “leaky query” local constraints under which interactive protocols strictly outperform the noninteractive ones for identity testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信