统一的可解释AI框架,提高分类器性能

R. Manjunath, B.N Chandrashekar, B. Vinutha, Rahul Arya, Arindam Chatterjee
{"title":"统一的可解释AI框架,提高分类器性能","authors":"R. Manjunath, B.N Chandrashekar, B. Vinutha, Rahul Arya, Arindam Chatterjee","doi":"10.1109/GHCI47972.2019.9071811","DOIUrl":null,"url":null,"abstract":"Deep learning image classifiers are extensively used in document processing, activity monitoring, object recognition and separations etc. However, even the best classifiers are not free from errors. It would be very helpful if the errors that are pumped in to the system due to the classifier decisions are reduced. The framework comprises of heat map generation, attribute generation, text explanation generation and activation.","PeriodicalId":153240,"journal":{"name":"2019 Grace Hopper Celebration India (GHCI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified framework of Explainable AI to enhance classifier performance\",\"authors\":\"R. Manjunath, B.N Chandrashekar, B. Vinutha, Rahul Arya, Arindam Chatterjee\",\"doi\":\"10.1109/GHCI47972.2019.9071811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning image classifiers are extensively used in document processing, activity monitoring, object recognition and separations etc. However, even the best classifiers are not free from errors. It would be very helpful if the errors that are pumped in to the system due to the classifier decisions are reduced. The framework comprises of heat map generation, attribute generation, text explanation generation and activation.\",\"PeriodicalId\":153240,\"journal\":{\"name\":\"2019 Grace Hopper Celebration India (GHCI)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Grace Hopper Celebration India (GHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHCI47972.2019.9071811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Grace Hopper Celebration India (GHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHCI47972.2019.9071811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习图像分类器广泛应用于文档处理、活动监控、目标识别和分离等领域。然而,即使是最好的分类器也不是没有错误的。如果由于分类器决策而被泵入系统的错误减少,这将非常有帮助。该框架包括热图生成、属性生成、文本解释生成和激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified framework of Explainable AI to enhance classifier performance
Deep learning image classifiers are extensively used in document processing, activity monitoring, object recognition and separations etc. However, even the best classifiers are not free from errors. It would be very helpful if the errors that are pumped in to the system due to the classifier decisions are reduced. The framework comprises of heat map generation, attribute generation, text explanation generation and activation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信