GMM - Thompson聚合器的递归效用和收费公路理论

R. Becker, J. P. Rincón-Zapatero
{"title":"GMM - Thompson聚合器的递归效用和收费公路理论","authors":"R. Becker, J. P. Rincón-Zapatero","doi":"10.2139/ssrn.3521498","DOIUrl":null,"url":null,"abstract":"The existence of a unique optimum, a unique optimal stationary program, and a turnpike theorem are demonstrated for a neoclassical one sector optimal growth model. The planneris allocation problem is formulated as a discrete time deterministic, infinite horizon programming model. The production sector is subject to diminishing marginal returns to capital. The planneris objective function is derived from a Generalized Marinacci and Montrucchio (GMM) Thompson aggregator preference. A given Thompson aggregator may be associated with many intertemporal utility functions (which may not be ordinally equivalent). The choice of one of these representations over another is shown to be a matter of mathematical tractability. There is an observational equivalence between those alternative objective functions: the qualitative features of the optimal solution do not depend on the particular utility function representation of the underlying Thompson aggregator preference structure.","PeriodicalId":330048,"journal":{"name":"Macroeconomics: Aggregative Models eJournal","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive Utility and Turnpike Theory for GMM Thompson Aggregators\",\"authors\":\"R. Becker, J. P. Rincón-Zapatero\",\"doi\":\"10.2139/ssrn.3521498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of a unique optimum, a unique optimal stationary program, and a turnpike theorem are demonstrated for a neoclassical one sector optimal growth model. The planneris allocation problem is formulated as a discrete time deterministic, infinite horizon programming model. The production sector is subject to diminishing marginal returns to capital. The planneris objective function is derived from a Generalized Marinacci and Montrucchio (GMM) Thompson aggregator preference. A given Thompson aggregator may be associated with many intertemporal utility functions (which may not be ordinally equivalent). The choice of one of these representations over another is shown to be a matter of mathematical tractability. There is an observational equivalence between those alternative objective functions: the qualitative features of the optimal solution do not depend on the particular utility function representation of the underlying Thompson aggregator preference structure.\",\"PeriodicalId\":330048,\"journal\":{\"name\":\"Macroeconomics: Aggregative Models eJournal\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macroeconomics: Aggregative Models eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3521498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Aggregative Models eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3521498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了新古典单部门最优增长模型存在唯一最优、唯一最优平稳规划和收费公路定理。将规划人员分配问题表述为一个离散时间确定性的无限视界规划模型。生产部门受到资本边际收益递减的影响。计划者的目标函数是由广义Marinacci和Montrucchio (GMM) Thompson聚合器偏好导出的。给定的Thompson聚合器可能与许多跨时间效用函数相关联(这些函数可能不是通常相等的)。选择这些表示中的一种而不是另一种,是一个数学上可处理性的问题。在这些可选的目标函数之间存在一种可观察到的等价性:最优解的定性特征不依赖于潜在汤普森聚合器偏好结构的特定效用函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Utility and Turnpike Theory for GMM Thompson Aggregators
The existence of a unique optimum, a unique optimal stationary program, and a turnpike theorem are demonstrated for a neoclassical one sector optimal growth model. The planneris allocation problem is formulated as a discrete time deterministic, infinite horizon programming model. The production sector is subject to diminishing marginal returns to capital. The planneris objective function is derived from a Generalized Marinacci and Montrucchio (GMM) Thompson aggregator preference. A given Thompson aggregator may be associated with many intertemporal utility functions (which may not be ordinally equivalent). The choice of one of these representations over another is shown to be a matter of mathematical tractability. There is an observational equivalence between those alternative objective functions: the qualitative features of the optimal solution do not depend on the particular utility function representation of the underlying Thompson aggregator preference structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信