Ravi Kokku, R. Mahindra, Honghai Zhang, S. Rangarajan
{"title":"用于WiMAX网络的虚拟化基板","authors":"Ravi Kokku, R. Mahindra, Honghai Zhang, S. Rangarajan","doi":"10.1145/1859995.1860023","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of a network virtualization substrate NVS) for effective virtualization of wireless resources in WiMAX networks. Virtualization fosters the realization of several interesting deployment scenarios such as customized virtual networks, virtual services and wide-area corporate networks, with diverse performance objectives. In virtualizing a basestation's uplink and downlink resources into slices, NVS meets three key requirements - isolation, customization, and efficient resource utilization - using two novel features: (1) NVS introduces a provably-optimal slice scheduler that allows existence of slices with bandwidth-based and resource-based reservations simultaneously, and (2) NVS includes a generic framework for efficiently enabling customized flow scheduling within the basestation on a per-slice basis. Through a prototype implementation and detailed evaluation on a WiMAX testbed, we demonstrate the efficacy of NVS. For instance, we show for both downlink and uplink directions that NVS can run different flow schedulers in different slices, run different slices simultaneously with different types of reservations, and perform slice-specific application optimizations for providing customized services.","PeriodicalId":229719,"journal":{"name":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"NVS: a virtualization substrate for WiMAX networks\",\"authors\":\"Ravi Kokku, R. Mahindra, Honghai Zhang, S. Rangarajan\",\"doi\":\"10.1145/1859995.1860023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design and implementation of a network virtualization substrate NVS) for effective virtualization of wireless resources in WiMAX networks. Virtualization fosters the realization of several interesting deployment scenarios such as customized virtual networks, virtual services and wide-area corporate networks, with diverse performance objectives. In virtualizing a basestation's uplink and downlink resources into slices, NVS meets three key requirements - isolation, customization, and efficient resource utilization - using two novel features: (1) NVS introduces a provably-optimal slice scheduler that allows existence of slices with bandwidth-based and resource-based reservations simultaneously, and (2) NVS includes a generic framework for efficiently enabling customized flow scheduling within the basestation on a per-slice basis. Through a prototype implementation and detailed evaluation on a WiMAX testbed, we demonstrate the efficacy of NVS. For instance, we show for both downlink and uplink directions that NVS can run different flow schedulers in different slices, run different slices simultaneously with different types of reservations, and perform slice-specific application optimizations for providing customized services.\",\"PeriodicalId\":229719,\"journal\":{\"name\":\"Proceedings of the sixteenth annual international conference on Mobile computing and networking\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the sixteenth annual international conference on Mobile computing and networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1859995.1860023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1859995.1860023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NVS: a virtualization substrate for WiMAX networks
This paper describes the design and implementation of a network virtualization substrate NVS) for effective virtualization of wireless resources in WiMAX networks. Virtualization fosters the realization of several interesting deployment scenarios such as customized virtual networks, virtual services and wide-area corporate networks, with diverse performance objectives. In virtualizing a basestation's uplink and downlink resources into slices, NVS meets three key requirements - isolation, customization, and efficient resource utilization - using two novel features: (1) NVS introduces a provably-optimal slice scheduler that allows existence of slices with bandwidth-based and resource-based reservations simultaneously, and (2) NVS includes a generic framework for efficiently enabling customized flow scheduling within the basestation on a per-slice basis. Through a prototype implementation and detailed evaluation on a WiMAX testbed, we demonstrate the efficacy of NVS. For instance, we show for both downlink and uplink directions that NVS can run different flow schedulers in different slices, run different slices simultaneously with different types of reservations, and perform slice-specific application optimizations for providing customized services.