{"title":"将weerstrass轨迹压缩为一个点","authors":"A. Polishchuk","doi":"10.1090/PSPUM/098/01725","DOIUrl":null,"url":null,"abstract":"We construct an open substack $U\\subset\\mathcal{M}_{g,1}$ with the complement of codimension $\\ge 2$ and a morphism from $U$ to a weighted projective stack, which sends the Weierstrass locus $\\mathcal{W}\\cap U$ to a point, and maps $\\mathcal{M}_{g,1}\\setminus\\mathcal{W}$ isomorphically to its image. The proof uses alternative birational models of $\\mathcal{M}_{g,1}$ and $\\mathcal{M}_{g,2}$ from arXiv:1509.07241.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Contracting the Weierstrass locus to a\\n point\",\"authors\":\"A. Polishchuk\",\"doi\":\"10.1090/PSPUM/098/01725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an open substack $U\\\\subset\\\\mathcal{M}_{g,1}$ with the complement of codimension $\\\\ge 2$ and a morphism from $U$ to a weighted projective stack, which sends the Weierstrass locus $\\\\mathcal{W}\\\\cap U$ to a point, and maps $\\\\mathcal{M}_{g,1}\\\\setminus\\\\mathcal{W}$ isomorphically to its image. The proof uses alternative birational models of $\\\\mathcal{M}_{g,1}$ and $\\\\mathcal{M}_{g,2}$ from arXiv:1509.07241.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/098/01725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/098/01725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We construct an open substack $U\subset\mathcal{M}_{g,1}$ with the complement of codimension $\ge 2$ and a morphism from $U$ to a weighted projective stack, which sends the Weierstrass locus $\mathcal{W}\cap U$ to a point, and maps $\mathcal{M}_{g,1}\setminus\mathcal{W}$ isomorphically to its image. The proof uses alternative birational models of $\mathcal{M}_{g,1}$ and $\mathcal{M}_{g,2}$ from arXiv:1509.07241.