Vijayarajan Rajangam, S. N., K. R., K. Mallikarjuna
{"title":"基于VGG19深度学习网络的脑图像融合性能分析","authors":"Vijayarajan Rajangam, S. N., K. R., K. Mallikarjuna","doi":"10.4018/978-1-7998-6690-9.ch008","DOIUrl":null,"url":null,"abstract":"Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.","PeriodicalId":346792,"journal":{"name":"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion\",\"authors\":\"Vijayarajan Rajangam, S. N., K. R., K. Mallikarjuna\",\"doi\":\"10.4018/978-1-7998-6690-9.ch008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.\",\"PeriodicalId\":346792,\"journal\":{\"name\":\"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-6690-9.ch008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-6690-9.ch008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion
Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.