基于深度学习自编码器的4G网络性能异常检测模型

Md Rakibul Ahasan, Mirza Sanita Haque, Mohammad Rubbyat Akram, Mohammed Fahim Momen, Md. Golam Rabiul Alam
{"title":"基于深度学习自编码器的4G网络性能异常检测模型","authors":"Md Rakibul Ahasan, Mirza Sanita Haque, Mohammad Rubbyat Akram, Mohammed Fahim Momen, Md. Golam Rabiul Alam","doi":"10.1109/aiiot54504.2022.9817338","DOIUrl":null,"url":null,"abstract":"A 4G network stands for a fourth-generation mobile network that enables 4G capable mobile phones to connect with the internet faster than ever. It is possible because of faster authentication between mobile phone and network entity. The network entities are sophisticated and require constant monitoring in terms of fault management and performance management. However, the fault is very rare in that network nodes, but a deviation of performance is normal. This deviation is known as an anomaly, and machine learning is useful for detecting an anomaly. In this paper, deep neural network autoencoder-based anomaly detection is discussed over 4G network performance data. An autoencoder can mimic an output from its input and provide superior performance when the data properties are similar. Further elaboration in this paper is how different properties of autoencoder hidden layer count, variable threshold measurement etc influence the anomaly detection outcome of 4G network performance data. At last, an autoencoder configuration is recommended for anomaly detection of 4G network performance data.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Autoencoder based Anomaly Detection Model on 4G Network Performance Data\",\"authors\":\"Md Rakibul Ahasan, Mirza Sanita Haque, Mohammad Rubbyat Akram, Mohammed Fahim Momen, Md. Golam Rabiul Alam\",\"doi\":\"10.1109/aiiot54504.2022.9817338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 4G network stands for a fourth-generation mobile network that enables 4G capable mobile phones to connect with the internet faster than ever. It is possible because of faster authentication between mobile phone and network entity. The network entities are sophisticated and require constant monitoring in terms of fault management and performance management. However, the fault is very rare in that network nodes, but a deviation of performance is normal. This deviation is known as an anomaly, and machine learning is useful for detecting an anomaly. In this paper, deep neural network autoencoder-based anomaly detection is discussed over 4G network performance data. An autoencoder can mimic an output from its input and provide superior performance when the data properties are similar. Further elaboration in this paper is how different properties of autoencoder hidden layer count, variable threshold measurement etc influence the anomaly detection outcome of 4G network performance data. At last, an autoencoder configuration is recommended for anomaly detection of 4G network performance data.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

4G网络是指第四代移动网络,它能让支持4G的手机以比以往更快的速度连接互联网。因为手机和网络实体之间的认证速度更快,所以这是可能的。网络实体复杂,需要在故障管理和性能管理方面进行持续监控。该故障在该网络节点中非常罕见,但出现性能偏差属于正常现象。这种偏差被称为异常,机器学习对于检测异常非常有用。本文讨论了基于深度神经网络自编码器的4G网络性能数据异常检测。当数据属性相似时,自动编码器可以模仿其输入的输出并提供优越的性能。本文进一步阐述了自编码器隐层计数、可变阈值测量等不同属性对4G网络性能数据异常检测结果的影响。最后,推荐了一种用于4G网络性能数据异常检测的自编码器配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Autoencoder based Anomaly Detection Model on 4G Network Performance Data
A 4G network stands for a fourth-generation mobile network that enables 4G capable mobile phones to connect with the internet faster than ever. It is possible because of faster authentication between mobile phone and network entity. The network entities are sophisticated and require constant monitoring in terms of fault management and performance management. However, the fault is very rare in that network nodes, but a deviation of performance is normal. This deviation is known as an anomaly, and machine learning is useful for detecting an anomaly. In this paper, deep neural network autoencoder-based anomaly detection is discussed over 4G network performance data. An autoencoder can mimic an output from its input and provide superior performance when the data properties are similar. Further elaboration in this paper is how different properties of autoencoder hidden layer count, variable threshold measurement etc influence the anomaly detection outcome of 4G network performance data. At last, an autoencoder configuration is recommended for anomaly detection of 4G network performance data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信