非平稳滤波网络的遗传算法学习过程

A. Sztandera, Katarzyna Wiechetek
{"title":"非平稳滤波网络的遗传算法学习过程","authors":"A. Sztandera, Katarzyna Wiechetek","doi":"10.1109/MMAR.2017.8046837","DOIUrl":null,"url":null,"abstract":"In the paper a concept of nonstationary network consisted of 1st order elements is presented. Research in order to approximate the assumed frequency response using the filtering network were conducted. Learning the network was achieved by minimizing the assumed error function using genetic algorithms. Introducing time function in place of time constant reduced the duration of the transition processes.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"781 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning process for nonstationary filtering network using genetic algorithms\",\"authors\":\"A. Sztandera, Katarzyna Wiechetek\",\"doi\":\"10.1109/MMAR.2017.8046837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper a concept of nonstationary network consisted of 1st order elements is presented. Research in order to approximate the assumed frequency response using the filtering network were conducted. Learning the network was achieved by minimizing the assumed error function using genetic algorithms. Introducing time function in place of time constant reduced the duration of the transition processes.\",\"PeriodicalId\":189753,\"journal\":{\"name\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"781 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2017.8046837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了由一阶元组成的非平稳网络的概念。为了利用滤波网络逼近假定的频率响应,进行了研究。通过遗传算法最小化假设误差函数来实现网络的学习。引入时间函数代替时间常数,缩短了过渡过程的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning process for nonstationary filtering network using genetic algorithms
In the paper a concept of nonstationary network consisted of 1st order elements is presented. Research in order to approximate the assumed frequency response using the filtering network were conducted. Learning the network was achieved by minimizing the assumed error function using genetic algorithms. Introducing time function in place of time constant reduced the duration of the transition processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信