用于云数据库的通用自动供应框架

Jennie Duggan, Olga Papaemmanouil, U. Çetintemel
{"title":"用于云数据库的通用自动供应框架","authors":"Jennie Duggan, Olga Papaemmanouil, U. Çetintemel","doi":"10.1109/ICDEW.2010.5452746","DOIUrl":null,"url":null,"abstract":"We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"777 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A generic auto-provisioning framework for cloud databases\",\"authors\":\"Jennie Duggan, Olga Papaemmanouil, U. Çetintemel\",\"doi\":\"10.1109/ICDEW.2010.5452746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"777 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

我们将讨论在基础设施即服务(IaaS)云上运行的数据库管理系统的资源配置问题。为了解决这个问题,我们描述了一个可扩展框架,在给定目标查询工作负载的情况下,该框架根据IaaS提供商的定价模型不断优化系统的运营成本,同时满足QoS预期。具体来说,我们描述了两种不同的方法,一种是使用细粒度估计工作负载的预期资源消耗的“白盒”方法,另一种是依赖粗粒度分析来描述工作负载跨各种云资源的端到端性能的“黑盒”方法。我们将这两种方法形式化为约束规划问题,并使用通用约束求解器来有效地解决它们。通过在Amazon的EC2上使用PostsgreSQL运行TPC-H查询,我们给出了初步的实验数据,这些数据证明了我们的方法的可行性和实用性。我们还简要讨论了相关的挑战和正在进行的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generic auto-provisioning framework for cloud databases
We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信