使用萤火虫和遗传算法优化测试套件

A. Pandey, S. Banerjee
{"title":"使用萤火虫和遗传算法优化测试套件","authors":"A. Pandey, S. Banerjee","doi":"10.4018/IJSSCI.2019010103","DOIUrl":null,"url":null,"abstract":"Software testing is essential for providing error-free software. It is a well-known fact that software testing is responsible for at least 50% of the total development cost. Therefore, it is necessary to automate and optimize the testing processes. Search-based software engineering is a discipline mainly focussed on automation and optimization of various software engineering processes including software testing. In this article, a novel approach of hybrid firefly and a genetic algorithm is applied for test data generation and selection in regression testing environment. A case study is used along with an empirical evaluation for the proposed approach. Results show that the hybrid approach performs well on various parameters that have been selected in the experiments.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Test Suite Optimization Using Firefly and Genetic Algorithm\",\"authors\":\"A. Pandey, S. Banerjee\",\"doi\":\"10.4018/IJSSCI.2019010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software testing is essential for providing error-free software. It is a well-known fact that software testing is responsible for at least 50% of the total development cost. Therefore, it is necessary to automate and optimize the testing processes. Search-based software engineering is a discipline mainly focussed on automation and optimization of various software engineering processes including software testing. In this article, a novel approach of hybrid firefly and a genetic algorithm is applied for test data generation and selection in regression testing environment. A case study is used along with an empirical evaluation for the proposed approach. Results show that the hybrid approach performs well on various parameters that have been selected in the experiments.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2019010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2019010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

软件测试对于提供无错误的软件是必不可少的。众所周知,软件测试至少占总开发成本的50%。因此,自动化和优化测试过程是必要的。基于搜索的软件工程是一门主要关注包括软件测试在内的各种软件工程过程的自动化和优化的学科。在回归测试环境中,采用混合萤火虫和遗传算法进行测试数据的生成和选择。案例研究与实证评估一起被用于提出的方法。结果表明,该方法对实验中选定的各种参数都有较好的处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test Suite Optimization Using Firefly and Genetic Algorithm
Software testing is essential for providing error-free software. It is a well-known fact that software testing is responsible for at least 50% of the total development cost. Therefore, it is necessary to automate and optimize the testing processes. Search-based software engineering is a discipline mainly focussed on automation and optimization of various software engineering processes including software testing. In this article, a novel approach of hybrid firefly and a genetic algorithm is applied for test data generation and selection in regression testing environment. A case study is used along with an empirical evaluation for the proposed approach. Results show that the hybrid approach performs well on various parameters that have been selected in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信