实现快速瞬态响应和纹波抑制的PMSM驱动器模型预测电流控制

H. Kawai, J. Cordier, R. Kennel, S. Doki
{"title":"实现快速瞬态响应和纹波抑制的PMSM驱动器模型预测电流控制","authors":"H. Kawai, J. Cordier, R. Kennel, S. Doki","doi":"10.1109/IECON48115.2021.9589696","DOIUrl":null,"url":null,"abstract":"This study presents current control algorithm based on a finite control set model predictive control (FCS-MPC) to achieve both high dynamics and current ripple suppression. In the proposed method, the smoothed voltage vectors with a finite set are applied as a control input candidate to avoid a sudden change in output voltage which generates large current ripple. In addition, the smoothness is determined automatically depending on a drive situation and system’s specification. Owing to this, fast transient response is achieved while keeping small current ripple during drive operation. The simulated and experimental results obtained with a permanent magnet synchronous motor (PMSM) show that the proposed method is effective for current ripple reduction and high dynamics control as compared to traditional FCS-MPC approach.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"39 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Predictive Current Control of PMSM drives for Achieving both Fast Transient Response and Ripple Suppression\",\"authors\":\"H. Kawai, J. Cordier, R. Kennel, S. Doki\",\"doi\":\"10.1109/IECON48115.2021.9589696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents current control algorithm based on a finite control set model predictive control (FCS-MPC) to achieve both high dynamics and current ripple suppression. In the proposed method, the smoothed voltage vectors with a finite set are applied as a control input candidate to avoid a sudden change in output voltage which generates large current ripple. In addition, the smoothness is determined automatically depending on a drive situation and system’s specification. Owing to this, fast transient response is achieved while keeping small current ripple during drive operation. The simulated and experimental results obtained with a permanent magnet synchronous motor (PMSM) show that the proposed method is effective for current ripple reduction and high dynamics control as compared to traditional FCS-MPC approach.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"39 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于有限控制集模型预测控制(FCS-MPC)的电流控制算法,以实现高动态和电流纹波抑制。该方法采用有限组平滑电压矢量作为控制候选输入,避免了输出电压突变产生的大纹波。此外,平滑度是根据驱动情况和系统规格自动确定的。因此,在驱动过程中,可以实现快速的瞬态响应,同时保持较小的电流纹波。在永磁同步电机上的仿真和实验结果表明,与传统的FCS-MPC方法相比,该方法具有减小电流纹波和高动态控制的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Current Control of PMSM drives for Achieving both Fast Transient Response and Ripple Suppression
This study presents current control algorithm based on a finite control set model predictive control (FCS-MPC) to achieve both high dynamics and current ripple suppression. In the proposed method, the smoothed voltage vectors with a finite set are applied as a control input candidate to avoid a sudden change in output voltage which generates large current ripple. In addition, the smoothness is determined automatically depending on a drive situation and system’s specification. Owing to this, fast transient response is achieved while keeping small current ripple during drive operation. The simulated and experimental results obtained with a permanent magnet synchronous motor (PMSM) show that the proposed method is effective for current ripple reduction and high dynamics control as compared to traditional FCS-MPC approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信