局部正则化正交最小二乘算法构建稀疏核回归模型

Sheng Chen
{"title":"局部正则化正交最小二乘算法构建稀疏核回归模型","authors":"Sheng Chen","doi":"10.1109/ICOSP.2002.1180013","DOIUrl":null,"url":null,"abstract":"The paper proposes to combine orthogonal least squares (OLS) model selection with local regularisation for efficient sparse kernel data modelling. By assigning each orthogonal weight in the regression model with an individual regularisation parameter, the ability for the OLS model selection to produce a very parsimonious model with excellent generalisation performance is greatly enhanced.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models\",\"authors\":\"Sheng Chen\",\"doi\":\"10.1109/ICOSP.2002.1180013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes to combine orthogonal least squares (OLS) model selection with local regularisation for efficient sparse kernel data modelling. By assigning each orthogonal weight in the regression model with an individual regularisation parameter, the ability for the OLS model selection to produce a very parsimonious model with excellent generalisation performance is greatly enhanced.\",\"PeriodicalId\":159807,\"journal\":{\"name\":\"6th International Conference on Signal Processing, 2002.\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Conference on Signal Processing, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2002.1180013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1180013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出将正交最小二乘(OLS)模型选择与局部正则化相结合,实现高效的稀疏核数据建模。通过为回归模型中的每个正交权值分配一个单独的正则化参数,OLS模型选择产生具有优异泛化性能的非常简洁的模型的能力大大增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models
The paper proposes to combine orthogonal least squares (OLS) model selection with local regularisation for efficient sparse kernel data modelling. By assigning each orthogonal weight in the regression model with an individual regularisation parameter, the ability for the OLS model selection to produce a very parsimonious model with excellent generalisation performance is greatly enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信