分数阶核支持向量数据描述

Changming Zhu, Zhe Wang, Minguang Wang, Wenbo Jie, Daqi Gao
{"title":"分数阶核支持向量数据描述","authors":"Changming Zhu, Zhe Wang, Minguang Wang, Wenbo Jie, Daqi Gao","doi":"10.1145/3340997.3341003","DOIUrl":null,"url":null,"abstract":"Support Vector Data Description (SVDD) as a kernel-based method constructs a minimum hypersphere so as to enclose all the data of the target class in the kernel mapping space. In this paper, it is found that the kernel matrix G of SVDD can always have the Singular Value Decomposition (SVD) and the corresponding kernel mapping space can be made up of a set of base vectors generated by SVD. In order to make the kernel mapping more flexible, we induce a parameter λ into the set of base vectors and thus propose a novel SVDD with fractional order kernel (named λ-SVDD). In doing so, we can expand the solution space for the optimized dual problem of the SVDD. The experimental results on both synthetic data set and some real data sets show that the proposed method can bring more accurate description for all the tested target cases than the conventional SVDD.","PeriodicalId":409906,"journal":{"name":"Proceedings of the 2019 4th International Conference on Machine Learning Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support Vector Data Description with Fractional Order Kernel\",\"authors\":\"Changming Zhu, Zhe Wang, Minguang Wang, Wenbo Jie, Daqi Gao\",\"doi\":\"10.1145/3340997.3341003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Data Description (SVDD) as a kernel-based method constructs a minimum hypersphere so as to enclose all the data of the target class in the kernel mapping space. In this paper, it is found that the kernel matrix G of SVDD can always have the Singular Value Decomposition (SVD) and the corresponding kernel mapping space can be made up of a set of base vectors generated by SVD. In order to make the kernel mapping more flexible, we induce a parameter λ into the set of base vectors and thus propose a novel SVDD with fractional order kernel (named λ-SVDD). In doing so, we can expand the solution space for the optimized dual problem of the SVDD. The experimental results on both synthetic data set and some real data sets show that the proposed method can bring more accurate description for all the tested target cases than the conventional SVDD.\",\"PeriodicalId\":409906,\"journal\":{\"name\":\"Proceedings of the 2019 4th International Conference on Machine Learning Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 4th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340997.3341003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 4th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340997.3341003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量数据描述(SVDD)作为一种基于核的方法,构造了一个最小超球,将目标类的所有数据都包含在核映射空间中。本文发现SVDD的核矩阵G总是可以具有奇异值分解(SVD),并且相应的核映射空间可以由SVD生成的一组基向量组成。为了使核映射更加灵活,我们在基向量集合中引入一个参数λ,从而提出了一种新的分数阶核支持向量分解(SVDD) (λ-SVDD)。这样,我们可以扩展优化后的SVDD对偶问题的解空间。在合成数据集和一些真实数据集上的实验结果表明,该方法比传统的SVDD方法能更准确地描述所有被测目标情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Data Description with Fractional Order Kernel
Support Vector Data Description (SVDD) as a kernel-based method constructs a minimum hypersphere so as to enclose all the data of the target class in the kernel mapping space. In this paper, it is found that the kernel matrix G of SVDD can always have the Singular Value Decomposition (SVD) and the corresponding kernel mapping space can be made up of a set of base vectors generated by SVD. In order to make the kernel mapping more flexible, we induce a parameter λ into the set of base vectors and thus propose a novel SVDD with fractional order kernel (named λ-SVDD). In doing so, we can expand the solution space for the optimized dual problem of the SVDD. The experimental results on both synthetic data set and some real data sets show that the proposed method can bring more accurate description for all the tested target cases than the conventional SVDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信