使用深度q -学习的自主仓库机器人

Ismot Sadik Peyas, Z. Hasan, Md. Rafat Rahman Tushar, Al Musabbir, Raisa Mehjabin Azni, Shahnewaz Siddique
{"title":"使用深度q -学习的自主仓库机器人","authors":"Ismot Sadik Peyas, Z. Hasan, Md. Rafat Rahman Tushar, Al Musabbir, Raisa Mehjabin Azni, Shahnewaz Siddique","doi":"10.1109/TENCON54134.2021.9707256","DOIUrl":null,"url":null,"abstract":"In warehouses, specialized agents need to navigate, avoid obstacles and maximize the use of space in the warehouse environment. Due to the unpredictability of these environments, reinforcement learning approaches can be applied to complete these tasks. In this paper, we propose using Deep Reinforcement Learning (DRL) to address the robot navigation and obstacle avoidance problem and traditional Q-learning with minor variations to maximize the use of space for product placement. We first investigate the problem for the single robot case. Next, based on the single robot model, we extend our system to the multi-robot case. We use a strategic variation of Q-tables to perform multi-agent Q-learning. We successfully test the performance of our model in a 2D simulation environment for both the single and multi-robot cases.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Autonomous Warehouse Robot using Deep Q-Learning\",\"authors\":\"Ismot Sadik Peyas, Z. Hasan, Md. Rafat Rahman Tushar, Al Musabbir, Raisa Mehjabin Azni, Shahnewaz Siddique\",\"doi\":\"10.1109/TENCON54134.2021.9707256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In warehouses, specialized agents need to navigate, avoid obstacles and maximize the use of space in the warehouse environment. Due to the unpredictability of these environments, reinforcement learning approaches can be applied to complete these tasks. In this paper, we propose using Deep Reinforcement Learning (DRL) to address the robot navigation and obstacle avoidance problem and traditional Q-learning with minor variations to maximize the use of space for product placement. We first investigate the problem for the single robot case. Next, based on the single robot model, we extend our system to the multi-robot case. We use a strategic variation of Q-tables to perform multi-agent Q-learning. We successfully test the performance of our model in a 2D simulation environment for both the single and multi-robot cases.\",\"PeriodicalId\":405859,\"journal\":{\"name\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON54134.2021.9707256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在仓库中,专门的agent需要导航,避开障碍物,最大限度地利用仓库环境中的空间。由于这些环境的不可预测性,可以应用强化学习方法来完成这些任务。在本文中,我们建议使用深度强化学习(DRL)来解决机器人导航和避障问题,并使用传统的q -学习进行微小的变化,以最大限度地利用产品植入的空间。我们首先研究单机器人情况下的问题。其次,在单机器人模型的基础上,将系统扩展到多机器人的情况。我们使用q表的策略变化来执行多智能体q学习。我们成功地在二维仿真环境中测试了我们的模型在单机器人和多机器人情况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Warehouse Robot using Deep Q-Learning
In warehouses, specialized agents need to navigate, avoid obstacles and maximize the use of space in the warehouse environment. Due to the unpredictability of these environments, reinforcement learning approaches can be applied to complete these tasks. In this paper, we propose using Deep Reinforcement Learning (DRL) to address the robot navigation and obstacle avoidance problem and traditional Q-learning with minor variations to maximize the use of space for product placement. We first investigate the problem for the single robot case. Next, based on the single robot model, we extend our system to the multi-robot case. We use a strategic variation of Q-tables to perform multi-agent Q-learning. We successfully test the performance of our model in a 2D simulation environment for both the single and multi-robot cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信