Iván Reyes-Amezcua, Daniel Flores-Araiza, G. Ochoa-Ruiz, Andres Mendez-Vazquez, E. Rodriguez-Tello
{"title":"MACFE:一个基于元学习和因果关系的特征工程框架","authors":"Iván Reyes-Amezcua, Daniel Flores-Araiza, G. Ochoa-Ruiz, Andres Mendez-Vazquez, E. Rodriguez-Tello","doi":"10.48550/arXiv.2207.04010","DOIUrl":null,"url":null,"abstract":". Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting “original” features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the cur-rent state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.","PeriodicalId":166595,"journal":{"name":"Mexican International Conference on Artificial Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MACFE: A Meta-learning and Causality Based Feature Engineering Framework\",\"authors\":\"Iván Reyes-Amezcua, Daniel Flores-Araiza, G. Ochoa-Ruiz, Andres Mendez-Vazquez, E. Rodriguez-Tello\",\"doi\":\"10.48550/arXiv.2207.04010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting “original” features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the cur-rent state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.\",\"PeriodicalId\":166595,\"journal\":{\"name\":\"Mexican International Conference on Artificial Intelligence\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.04010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.04010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MACFE: A Meta-learning and Causality Based Feature Engineering Framework
. Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting “original” features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the cur-rent state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.