基于特征选择和主题模型的文本数据流集成分类算法

Zhongxin Wang, Jianqiao Liu, Gang Sun, Jia Zhao, Zhengqi Ding, Xiaowen Guan
{"title":"基于特征选择和主题模型的文本数据流集成分类算法","authors":"Zhongxin Wang, Jianqiao Liu, Gang Sun, Jia Zhao, Zhengqi Ding, Xiaowen Guan","doi":"10.1109/ICAICA50127.2020.9181903","DOIUrl":null,"url":null,"abstract":"How to mine valuable information that users are interested in from a continuous text data stream, text data stream classification has received widespread attention as a core technology to solve the problem. This paper proposes a text data stream ensemble classification algorithm that combines feature selection and topic model. Firstly, the mutual information feature selection method is used to remove features that are not related to classification. Secondly, the LDA topic model is used to establish the document-topic distribution. Finally, the pre-processed text data stream is classified by an ensemble classification model. The experimental results show that the proposed text data stream ensemble classification algorithm can improve the classification performance of text data stream.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Ensemble Classification Algorithm for Text Data Stream based on Feature Selection and Topic Model\",\"authors\":\"Zhongxin Wang, Jianqiao Liu, Gang Sun, Jia Zhao, Zhengqi Ding, Xiaowen Guan\",\"doi\":\"10.1109/ICAICA50127.2020.9181903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to mine valuable information that users are interested in from a continuous text data stream, text data stream classification has received widespread attention as a core technology to solve the problem. This paper proposes a text data stream ensemble classification algorithm that combines feature selection and topic model. Firstly, the mutual information feature selection method is used to remove features that are not related to classification. Secondly, the LDA topic model is used to establish the document-topic distribution. Finally, the pre-processed text data stream is classified by an ensemble classification model. The experimental results show that the proposed text data stream ensemble classification algorithm can improve the classification performance of text data stream.\",\"PeriodicalId\":113564,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA50127.2020.9181903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9181903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

如何从连续的文本数据流中挖掘出用户感兴趣的有价值的信息,文本数据流分类作为解决这一问题的核心技术受到了广泛关注。提出了一种结合特征选择和主题模型的文本数据流集成分类算法。首先,采用互信息特征选择方法去除与分类无关的特征;其次,利用LDA主题模型建立文档-主题分布;最后,采用集成分类模型对预处理后的文本数据流进行分类。实验结果表明,本文提出的文本数据流集成分类算法能够提高文本数据流的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Classification Algorithm for Text Data Stream based on Feature Selection and Topic Model
How to mine valuable information that users are interested in from a continuous text data stream, text data stream classification has received widespread attention as a core technology to solve the problem. This paper proposes a text data stream ensemble classification algorithm that combines feature selection and topic model. Firstly, the mutual information feature selection method is used to remove features that are not related to classification. Secondly, the LDA topic model is used to establish the document-topic distribution. Finally, the pre-processed text data stream is classified by an ensemble classification model. The experimental results show that the proposed text data stream ensemble classification algorithm can improve the classification performance of text data stream.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信