压缩深度神经网络用于高效语音增强

Ke Tan, Deliang Wang
{"title":"压缩深度神经网络用于高效语音增强","authors":"Ke Tan, Deliang Wang","doi":"10.1109/ICASSP39728.2021.9413536","DOIUrl":null,"url":null,"abstract":"The use of deep neural networks (DNNs) has dramatically improved the performance of speech enhancement in the past decade. However, a large DNN is typically required to achieve strong enhancement performance, and this kind of model is both computationally intensive and memory consuming. Hence it is difficult to deploy such DNNs on devices with limited hardware resources or in applications with strict latency requirements. In order to address this problem, we propose a model compression pipeline to reduce DNN size for speech enhancement, which is based on three kinds of techniques: sparse regularization, iterative pruning and clustering-based quantization. Evaluation results show that our approach substantially reduces the sizes of different DNNs without significantly affecting their enhancement performance. Moreover, we find that training and compressing a large DNN yields higher STOI and PESQ than directly training a small DNN that has a comparable size to the compressed DNN. This further suggests the benefits of using the proposed model compression approach.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Compressing Deep Neural Networks for Efficient Speech Enhancement\",\"authors\":\"Ke Tan, Deliang Wang\",\"doi\":\"10.1109/ICASSP39728.2021.9413536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of deep neural networks (DNNs) has dramatically improved the performance of speech enhancement in the past decade. However, a large DNN is typically required to achieve strong enhancement performance, and this kind of model is both computationally intensive and memory consuming. Hence it is difficult to deploy such DNNs on devices with limited hardware resources or in applications with strict latency requirements. In order to address this problem, we propose a model compression pipeline to reduce DNN size for speech enhancement, which is based on three kinds of techniques: sparse regularization, iterative pruning and clustering-based quantization. Evaluation results show that our approach substantially reduces the sizes of different DNNs without significantly affecting their enhancement performance. Moreover, we find that training and compressing a large DNN yields higher STOI and PESQ than directly training a small DNN that has a comparable size to the compressed DNN. This further suggests the benefits of using the proposed model compression approach.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在过去的十年中,深度神经网络(dnn)的使用极大地提高了语音增强的性能。然而,通常需要一个大的深度神经网络来实现强大的增强性能,这种模型既需要大量的计算,又需要大量的内存。因此,很难在硬件资源有限的设备或具有严格延迟要求的应用程序中部署这种dnn。为了解决这个问题,我们提出了一种模型压缩管道来减少语音增强的DNN大小,该管道基于三种技术:稀疏正则化、迭代修剪和基于聚类的量化。评估结果表明,我们的方法大大减少了不同dnn的大小,而不会显著影响其增强性能。此外,我们发现训练和压缩大型DNN比直接训练与压缩DNN大小相当的小型DNN产生更高的STOI和PESQ。这进一步表明了使用所提出的模型压缩方法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressing Deep Neural Networks for Efficient Speech Enhancement
The use of deep neural networks (DNNs) has dramatically improved the performance of speech enhancement in the past decade. However, a large DNN is typically required to achieve strong enhancement performance, and this kind of model is both computationally intensive and memory consuming. Hence it is difficult to deploy such DNNs on devices with limited hardware resources or in applications with strict latency requirements. In order to address this problem, we propose a model compression pipeline to reduce DNN size for speech enhancement, which is based on three kinds of techniques: sparse regularization, iterative pruning and clustering-based quantization. Evaluation results show that our approach substantially reduces the sizes of different DNNs without significantly affecting their enhancement performance. Moreover, we find that training and compressing a large DNN yields higher STOI and PESQ than directly training a small DNN that has a comparable size to the compressed DNN. This further suggests the benefits of using the proposed model compression approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信