基于聚类和项集挖掘算法的道路事故数据分析

Aparna Mr
{"title":"基于聚类和项集挖掘算法的道路事故数据分析","authors":"Aparna Mr","doi":"10.20894/ijdmta.102.010.002.004","DOIUrl":null,"url":null,"abstract":"Road accidental detection is one of the emerging issue in recent days, which has been focused by many researchers. Road accident is the major cause for unnatural death, and desirability, which is unpredictable. So, many existing works aimed to develop some prediction approaches for analyzing the real time dataset and predicting the accidental rate for future. But, it limits with the drawbacks like inefficient prediction, reduced accuracy, and increased time consumption. Thus, this paper aims to propose a new prediction model by implementing various data mining techniques. It includes the stages of preprocessing, clustering, and itemset mining. Initially, the dataset obtained from the UCI repository is preprocessed by eliminating the irrelevant attributes and filling the missing values. Then, the density based clustering technique is implemented to group the filtered data into a cluster. After that, the rules are formed based on the support and confidence values for predicting the future. Finally, the frequent items are mined by the use of Apriori algorithm. In experiments, the performance results of the proposed system is validated and evaluated by using various measures such as accuracy, precision, recall, and time consumption","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of Road Accidental Data Using Clustering and Itemset Mining Algorithms\",\"authors\":\"Aparna Mr\",\"doi\":\"10.20894/ijdmta.102.010.002.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road accidental detection is one of the emerging issue in recent days, which has been focused by many researchers. Road accident is the major cause for unnatural death, and desirability, which is unpredictable. So, many existing works aimed to develop some prediction approaches for analyzing the real time dataset and predicting the accidental rate for future. But, it limits with the drawbacks like inefficient prediction, reduced accuracy, and increased time consumption. Thus, this paper aims to propose a new prediction model by implementing various data mining techniques. It includes the stages of preprocessing, clustering, and itemset mining. Initially, the dataset obtained from the UCI repository is preprocessed by eliminating the irrelevant attributes and filling the missing values. Then, the density based clustering technique is implemented to group the filtered data into a cluster. After that, the rules are formed based on the support and confidence values for predicting the future. Finally, the frequent items are mined by the use of Apriori algorithm. In experiments, the performance results of the proposed system is validated and evaluated by using various measures such as accuracy, precision, recall, and time consumption\",\"PeriodicalId\":414709,\"journal\":{\"name\":\"International Journal of Data Mining Techniques and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20894/ijdmta.102.010.002.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/ijdmta.102.010.002.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

道路事故检测是近年来新兴的问题之一,受到众多研究者的关注。道路交通事故是导致非自然死亡的主要原因,而非自然死亡是不可预测的。因此,许多现有的工作旨在开发一些预测方法来分析实时数据集并预测未来的意外率。但是,它的缺点是预测效率低下、准确性降低和时间消耗增加。因此,本文旨在通过实现各种数据挖掘技术,提出一种新的预测模型。它包括预处理、聚类和项集挖掘阶段。首先,通过消除不相关属性和填充缺失值来预处理从UCI存储库获得的数据集。然后,采用基于密度的聚类技术对过滤后的数据进行聚类。然后,根据预测未来的支持值和置信度值形成规则。最后,利用Apriori算法挖掘频繁项。在实验中,通过使用准确度、精密度、召回率和时间消耗等各种度量来验证和评估所提出系统的性能结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of Road Accidental Data Using Clustering and Itemset Mining Algorithms
Road accidental detection is one of the emerging issue in recent days, which has been focused by many researchers. Road accident is the major cause for unnatural death, and desirability, which is unpredictable. So, many existing works aimed to develop some prediction approaches for analyzing the real time dataset and predicting the accidental rate for future. But, it limits with the drawbacks like inefficient prediction, reduced accuracy, and increased time consumption. Thus, this paper aims to propose a new prediction model by implementing various data mining techniques. It includes the stages of preprocessing, clustering, and itemset mining. Initially, the dataset obtained from the UCI repository is preprocessed by eliminating the irrelevant attributes and filling the missing values. Then, the density based clustering technique is implemented to group the filtered data into a cluster. After that, the rules are formed based on the support and confidence values for predicting the future. Finally, the frequent items are mined by the use of Apriori algorithm. In experiments, the performance results of the proposed system is validated and evaluated by using various measures such as accuracy, precision, recall, and time consumption
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信