{"title":"L波段和c波段航空移动地面链路的窄带传播统计","authors":"A. Smith, D. Matolak, R. Kerczewski","doi":"10.1109/ICNSURV.2018.8384842","DOIUrl":null,"url":null,"abstract":"To provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), command and control (C2) links must be highly reliable. Hence, protected aviation spectrum is required to support such links for UAS that are integrated into controlled non-segregated airspace. For air-ground (i.e., non-satellite) links, protected aviation spectrum to support C2 links is available in the 960–1164 MHz (L) and 5030–5091 MHz (C) bands. The performance of any C2 system is critically dependent upon the characteristics of the air-ground (AG) channel. Therefore, as part of its UAS Integration in the NAS (UAS in the NAS) project, the U.S. National Aeronautics and Space Administration (NASA) performed a series of air-ground propagation flight tests to collect AG channel data for model development and analysis of potential C2 communications links capable of providing the required reliability. NASA's Glenn Research Center (GRC) conducted an extensive air-ground channel propagation measurement campaign (at altitude) for frequencies in the 960–977 MHz and 5030–5091 MHz ranges, for seven different terrain environments. The measurements were conducted in 2013, and produced the largest set of AG channel data ever gathered to date. This data was subsequently processed to develop models for the AG channel. The statistics collected enabled the derivation of channel model parameters for both narrowband and wideband channels. In order to make the propagation data widely available, the resulting narrowband statistics were processed and submitted to the International Telecommunications Union-Radiocommunication Sector (ITU-R) Study Group 3 Data Banks. Formats for data tables were developed, and tables of the aggregate narrowband propagation statistics for the seven ground site terrain environments were prepared, submitted to, and approved by, the ITU-R Study Group 3. This paper provides brief background on the measurement campaign, collection and processing of data, and development of the narrowband data tables. It further provides examples of the data and its use.","PeriodicalId":112779,"journal":{"name":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrowband propagation statistics of aeronautical mobile-ground links in the L- and C-bands\",\"authors\":\"A. Smith, D. Matolak, R. Kerczewski\",\"doi\":\"10.1109/ICNSURV.2018.8384842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), command and control (C2) links must be highly reliable. Hence, protected aviation spectrum is required to support such links for UAS that are integrated into controlled non-segregated airspace. For air-ground (i.e., non-satellite) links, protected aviation spectrum to support C2 links is available in the 960–1164 MHz (L) and 5030–5091 MHz (C) bands. The performance of any C2 system is critically dependent upon the characteristics of the air-ground (AG) channel. Therefore, as part of its UAS Integration in the NAS (UAS in the NAS) project, the U.S. National Aeronautics and Space Administration (NASA) performed a series of air-ground propagation flight tests to collect AG channel data for model development and analysis of potential C2 communications links capable of providing the required reliability. NASA's Glenn Research Center (GRC) conducted an extensive air-ground channel propagation measurement campaign (at altitude) for frequencies in the 960–977 MHz and 5030–5091 MHz ranges, for seven different terrain environments. The measurements were conducted in 2013, and produced the largest set of AG channel data ever gathered to date. This data was subsequently processed to develop models for the AG channel. The statistics collected enabled the derivation of channel model parameters for both narrowband and wideband channels. In order to make the propagation data widely available, the resulting narrowband statistics were processed and submitted to the International Telecommunications Union-Radiocommunication Sector (ITU-R) Study Group 3 Data Banks. Formats for data tables were developed, and tables of the aggregate narrowband propagation statistics for the seven ground site terrain environments were prepared, submitted to, and approved by, the ITU-R Study Group 3. This paper provides brief background on the measurement campaign, collection and processing of data, and development of the narrowband data tables. It further provides examples of the data and its use.\",\"PeriodicalId\":112779,\"journal\":{\"name\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSURV.2018.8384842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2018.8384842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Narrowband propagation statistics of aeronautical mobile-ground links in the L- and C-bands
To provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), command and control (C2) links must be highly reliable. Hence, protected aviation spectrum is required to support such links for UAS that are integrated into controlled non-segregated airspace. For air-ground (i.e., non-satellite) links, protected aviation spectrum to support C2 links is available in the 960–1164 MHz (L) and 5030–5091 MHz (C) bands. The performance of any C2 system is critically dependent upon the characteristics of the air-ground (AG) channel. Therefore, as part of its UAS Integration in the NAS (UAS in the NAS) project, the U.S. National Aeronautics and Space Administration (NASA) performed a series of air-ground propagation flight tests to collect AG channel data for model development and analysis of potential C2 communications links capable of providing the required reliability. NASA's Glenn Research Center (GRC) conducted an extensive air-ground channel propagation measurement campaign (at altitude) for frequencies in the 960–977 MHz and 5030–5091 MHz ranges, for seven different terrain environments. The measurements were conducted in 2013, and produced the largest set of AG channel data ever gathered to date. This data was subsequently processed to develop models for the AG channel. The statistics collected enabled the derivation of channel model parameters for both narrowband and wideband channels. In order to make the propagation data widely available, the resulting narrowband statistics were processed and submitted to the International Telecommunications Union-Radiocommunication Sector (ITU-R) Study Group 3 Data Banks. Formats for data tables were developed, and tables of the aggregate narrowband propagation statistics for the seven ground site terrain environments were prepared, submitted to, and approved by, the ITU-R Study Group 3. This paper provides brief background on the measurement campaign, collection and processing of data, and development of the narrowband data tables. It further provides examples of the data and its use.