G. Hilhorst, G. Pipeleers, W. Michiels, R. Oliveira, P. Peres, J. Swevers
{"title":"离散LPV系统的降阶h 2/ h∞控制及其在桥式起重机试验装置上的实验验证","authors":"G. Hilhorst, G. Pipeleers, W. Michiels, R. Oliveira, P. Peres, J. Swevers","doi":"10.1109/ACC.2015.7170723","DOIUrl":null,"url":null,"abstract":"This paper presents a numerically attractive approach to design reduced-order multi-objective ℋ<sub>2</sub>/ℋ<sub>∞</sub> controllers for discrete-time linear parameter-varying (LPV) systems. The proposed controller synthesis approach relies on an a priori computed polynomially parameter-dependent full-order LPV controller that stabilizes the LPV system for all possible parameter trajectories. This full-order controller is subsequently used in a sufficient linear matrix inequality (LMI) optimization problem for reduced-order ℋ<sub>2</sub>/ℋ<sub>∞</sub> LPV synthesis. Pólya relaxations are used to obtain tractable LMI formulations, and a simplicial subdivision of the parameter domain is applied to relieve the numerical burden. Experimental validations on a lab-scale overhead crane with varying cable length illustrate the practical viability of the approach.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reduced-order ℋ2/ℋ∞ control of discrete-time LPV systems with experimental validation on an overhead crane test setup\",\"authors\":\"G. Hilhorst, G. Pipeleers, W. Michiels, R. Oliveira, P. Peres, J. Swevers\",\"doi\":\"10.1109/ACC.2015.7170723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerically attractive approach to design reduced-order multi-objective ℋ<sub>2</sub>/ℋ<sub>∞</sub> controllers for discrete-time linear parameter-varying (LPV) systems. The proposed controller synthesis approach relies on an a priori computed polynomially parameter-dependent full-order LPV controller that stabilizes the LPV system for all possible parameter trajectories. This full-order controller is subsequently used in a sufficient linear matrix inequality (LMI) optimization problem for reduced-order ℋ<sub>2</sub>/ℋ<sub>∞</sub> LPV synthesis. Pólya relaxations are used to obtain tractable LMI formulations, and a simplicial subdivision of the parameter domain is applied to relieve the numerical burden. Experimental validations on a lab-scale overhead crane with varying cable length illustrate the practical viability of the approach.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduced-order ℋ2/ℋ∞ control of discrete-time LPV systems with experimental validation on an overhead crane test setup
This paper presents a numerically attractive approach to design reduced-order multi-objective ℋ2/ℋ∞ controllers for discrete-time linear parameter-varying (LPV) systems. The proposed controller synthesis approach relies on an a priori computed polynomially parameter-dependent full-order LPV controller that stabilizes the LPV system for all possible parameter trajectories. This full-order controller is subsequently used in a sufficient linear matrix inequality (LMI) optimization problem for reduced-order ℋ2/ℋ∞ LPV synthesis. Pólya relaxations are used to obtain tractable LMI formulations, and a simplicial subdivision of the parameter domain is applied to relieve the numerical burden. Experimental validations on a lab-scale overhead crane with varying cable length illustrate the practical viability of the approach.