{"title":"基于SOI的CMUT动态分析","authors":"T. Zure, J. Hernandez, S. Chowdhury","doi":"10.1109/ICIT.2012.6209994","DOIUrl":null,"url":null,"abstract":"An SOI based hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been fabricated to realize a frequency independent constant beamwidth broadband beamforming capability. Detailed fabrication and packaging techniques are presented. A Polytec laser Doppler vibrometer has been used to measure the transient and steady-state response of individual CMUT cells. The measured dynamic response results are in excellent agreement with analytical and 3-D electromechanical finite element analysis results. Experimental measurement also shows that the fabricated CMUTs exhibit a flat bandwidth within the specified frequency range. SEM inspection also shows very close agreement between mask features and fabricated geometry that ensures reproducibility of the device with a high degree of fidelity. The CMUT array has been designed for automotive blindspot detection application and works in the 113-167 kHz range.","PeriodicalId":365141,"journal":{"name":"2012 IEEE International Conference on Industrial Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dynamic analysis of an SOI based CMUT\",\"authors\":\"T. Zure, J. Hernandez, S. Chowdhury\",\"doi\":\"10.1109/ICIT.2012.6209994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An SOI based hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been fabricated to realize a frequency independent constant beamwidth broadband beamforming capability. Detailed fabrication and packaging techniques are presented. A Polytec laser Doppler vibrometer has been used to measure the transient and steady-state response of individual CMUT cells. The measured dynamic response results are in excellent agreement with analytical and 3-D electromechanical finite element analysis results. Experimental measurement also shows that the fabricated CMUTs exhibit a flat bandwidth within the specified frequency range. SEM inspection also shows very close agreement between mask features and fabricated geometry that ensures reproducibility of the device with a high degree of fidelity. The CMUT array has been designed for automotive blindspot detection application and works in the 113-167 kHz range.\",\"PeriodicalId\":365141,\"journal\":{\"name\":\"2012 IEEE International Conference on Industrial Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2012.6209994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2012.6209994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An SOI based hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been fabricated to realize a frequency independent constant beamwidth broadband beamforming capability. Detailed fabrication and packaging techniques are presented. A Polytec laser Doppler vibrometer has been used to measure the transient and steady-state response of individual CMUT cells. The measured dynamic response results are in excellent agreement with analytical and 3-D electromechanical finite element analysis results. Experimental measurement also shows that the fabricated CMUTs exhibit a flat bandwidth within the specified frequency range. SEM inspection also shows very close agreement between mask features and fabricated geometry that ensures reproducibility of the device with a high degree of fidelity. The CMUT array has been designed for automotive blindspot detection application and works in the 113-167 kHz range.