使用骨架表示的瑜伽姿势分级的自动工具*

Thanh Nam Nguyen, Thanh-Hai Tran, Hai Vu
{"title":"使用骨架表示的瑜伽姿势分级的自动工具*","authors":"Thanh Nam Nguyen, Thanh-Hai Tran, Hai Vu","doi":"10.1109/NICS56915.2022.10013455","DOIUrl":null,"url":null,"abstract":"Automatic grading of yoga poses may help yoga self-practitioners to rectify their poses to follow correctly the teacher. Some existing wearable or depth sensor based methods require the user to equip additional devices. This paper presents a framework for automatically grading yoga poses from images taken from a conventional RGB camera/phone camera. Our framework consists of three main phases. First, we estimate human joints from RGB images using BlazePose model. Second, we investigate various deep models and select VGG-16 as a model for yoga pose recognition. Finally, we define a score that takes the difference of angles at important joints and yoga pose label into account. Our solution is low-cost, easy, and light to implement on mobile devices. It gives a confident score on the YogaPose dataset and our self-collected dataset.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An automatic tool for yoga pose grading using skeleton representation *\",\"authors\":\"Thanh Nam Nguyen, Thanh-Hai Tran, Hai Vu\",\"doi\":\"10.1109/NICS56915.2022.10013455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic grading of yoga poses may help yoga self-practitioners to rectify their poses to follow correctly the teacher. Some existing wearable or depth sensor based methods require the user to equip additional devices. This paper presents a framework for automatically grading yoga poses from images taken from a conventional RGB camera/phone camera. Our framework consists of three main phases. First, we estimate human joints from RGB images using BlazePose model. Second, we investigate various deep models and select VGG-16 as a model for yoga pose recognition. Finally, we define a score that takes the difference of angles at important joints and yoga pose label into account. Our solution is low-cost, easy, and light to implement on mobile devices. It gives a confident score on the YogaPose dataset and our self-collected dataset.\",\"PeriodicalId\":381028,\"journal\":{\"name\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS56915.2022.10013455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

瑜伽姿势的自动评分可以帮助瑜伽自学者纠正他们的姿势,正确地跟随老师。一些现有的可穿戴或基于深度传感器的方法需要用户装备额外的设备。本文提出了一个框架,用于从传统RGB相机/手机相机拍摄的图像中自动分级瑜伽姿势。我们的框架由三个主要阶段组成。首先,我们使用BlazePose模型从RGB图像中估计人体关节。其次,我们研究了各种深度模型,并选择了VGG-16作为瑜伽姿势识别的模型。最后,我们定义了一个分数,该分数考虑了重要关节和瑜伽姿势标签的角度差异。我们的解决方案在移动设备上实现成本低、简单且轻巧。它在YogaPose数据集和我们自己收集的数据集上给出了一个自信的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic tool for yoga pose grading using skeleton representation *
Automatic grading of yoga poses may help yoga self-practitioners to rectify their poses to follow correctly the teacher. Some existing wearable or depth sensor based methods require the user to equip additional devices. This paper presents a framework for automatically grading yoga poses from images taken from a conventional RGB camera/phone camera. Our framework consists of three main phases. First, we estimate human joints from RGB images using BlazePose model. Second, we investigate various deep models and select VGG-16 as a model for yoga pose recognition. Finally, we define a score that takes the difference of angles at important joints and yoga pose label into account. Our solution is low-cost, easy, and light to implement on mobile devices. It gives a confident score on the YogaPose dataset and our self-collected dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信