基于盲源分离的负荷分布分解:一种小波辅助的独立分量分析方法

Yongli Zhu, Songtao Lu
{"title":"基于盲源分离的负荷分布分解:一种小波辅助的独立分量分析方法","authors":"Yongli Zhu, Songtao Lu","doi":"10.1109/PESGM.2014.6938947","DOIUrl":null,"url":null,"abstract":"In this paper, a Blind-source separation method, i.e. Independent Component Analysis (ICA) is used for disaggregating the substation load profile into different patterns, i.e. residential and commercial groups. The smart meter data from a down town substation has been used. Principle Component Analysis (PCA) is applied for data reduction. Wavelet analysis is used to extract the trend signal from the original load profile as inputs for the ICA routine. Final results verify the effectiveness of this load profile disaggregation approach.","PeriodicalId":149134,"journal":{"name":"2014 IEEE PES General Meeting | Conference & Exposition","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Load profile disaggregation by Blind source separation: A wavelets-assisted independent component analysis approach\",\"authors\":\"Yongli Zhu, Songtao Lu\",\"doi\":\"10.1109/PESGM.2014.6938947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Blind-source separation method, i.e. Independent Component Analysis (ICA) is used for disaggregating the substation load profile into different patterns, i.e. residential and commercial groups. The smart meter data from a down town substation has been used. Principle Component Analysis (PCA) is applied for data reduction. Wavelet analysis is used to extract the trend signal from the original load profile as inputs for the ICA routine. Final results verify the effectiveness of this load profile disaggregation approach.\",\"PeriodicalId\":149134,\"journal\":{\"name\":\"2014 IEEE PES General Meeting | Conference & Exposition\",\"volume\":\"286 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE PES General Meeting | Conference & Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2014.6938947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES General Meeting | Conference & Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2014.6938947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文采用一种盲源分离方法,即独立分量分析(ICA),将变电站负荷剖面分解为不同的模式,即住宅组和商业组。使用了市中心变电站的智能电表数据。采用主成分分析(PCA)进行数据约简。小波分析用于从原始负荷曲线中提取趋势信号作为ICA例程的输入。最后的结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load profile disaggregation by Blind source separation: A wavelets-assisted independent component analysis approach
In this paper, a Blind-source separation method, i.e. Independent Component Analysis (ICA) is used for disaggregating the substation load profile into different patterns, i.e. residential and commercial groups. The smart meter data from a down town substation has been used. Principle Component Analysis (PCA) is applied for data reduction. Wavelet analysis is used to extract the trend signal from the original load profile as inputs for the ICA routine. Final results verify the effectiveness of this load profile disaggregation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信