I. Isaev, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko
{"title":"一个涉及光谱方法集成的反问题:特征选择对神经网络解对数据噪声复原力的影响研究","authors":"I. Isaev, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko","doi":"10.1007/978-3-030-91581-0_45","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":105004,"journal":{"name":"Advances in Neural Computation, Machine Learning, and Cognitive Research V","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inverse Problem Involving Integration of Optical Spectroscopic Methods: Study of Influence of Feature Selection on Resilience of Neural Network Solution to Noise in Data\",\"authors\":\"I. Isaev, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko\",\"doi\":\"10.1007/978-3-030-91581-0_45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":105004,\"journal\":{\"name\":\"Advances in Neural Computation, Machine Learning, and Cognitive Research V\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Neural Computation, Machine Learning, and Cognitive Research V\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-91581-0_45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Neural Computation, Machine Learning, and Cognitive Research V","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-91581-0_45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Inverse Problem Involving Integration of Optical Spectroscopic Methods: Study of Influence of Feature Selection on Resilience of Neural Network Solution to Noise in Data