{"title":"在名称和进程上参数化高阶进程","authors":"Xian Xu","doi":"10.1051/ita/2019005","DOIUrl":null,"url":null,"abstract":"Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). As is well-known, this extension is strict, meaning that higher-order processes equipped with parameterization are strictly more expressive than those without parameterization. This paper studies strictly higher-order processes (i.e., no name-passing) with two kinds of parameterization: one on names and the other on processes themselves. We present two main results. One is that in presence of parameterization, higher-order processes can interpret first-order (name-passing) processes in a quite elegant fashion, in contrast to the fact that higher-order processes without parameterization cannot encode first-order processes at all. We present two such encodings and analyze their properties in depth, particularly full abstraction. In the other result, we provide a simpler characterization of the standard context bisimilarity for higher-order processes with parameterization, in terms of the normal bisimilarity that stems from the well-known normal characterization for higher-order calculus. As a spinoff, we show that the bisimulation up-to context technique is sound in the higher-order setting with parameterization.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameterizing higher-order processes on names and processes\",\"authors\":\"Xian Xu\",\"doi\":\"10.1051/ita/2019005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). As is well-known, this extension is strict, meaning that higher-order processes equipped with parameterization are strictly more expressive than those without parameterization. This paper studies strictly higher-order processes (i.e., no name-passing) with two kinds of parameterization: one on names and the other on processes themselves. We present two main results. One is that in presence of parameterization, higher-order processes can interpret first-order (name-passing) processes in a quite elegant fashion, in contrast to the fact that higher-order processes without parameterization cannot encode first-order processes at all. We present two such encodings and analyze their properties in depth, particularly full abstraction. In the other result, we provide a simpler characterization of the standard context bisimilarity for higher-order processes with parameterization, in terms of the normal bisimilarity that stems from the well-known normal characterization for higher-order calculus. As a spinoff, we show that the bisimulation up-to context technique is sound in the higher-order setting with parameterization.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2019005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2019005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterizing higher-order processes on names and processes
Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). As is well-known, this extension is strict, meaning that higher-order processes equipped with parameterization are strictly more expressive than those without parameterization. This paper studies strictly higher-order processes (i.e., no name-passing) with two kinds of parameterization: one on names and the other on processes themselves. We present two main results. One is that in presence of parameterization, higher-order processes can interpret first-order (name-passing) processes in a quite elegant fashion, in contrast to the fact that higher-order processes without parameterization cannot encode first-order processes at all. We present two such encodings and analyze their properties in depth, particularly full abstraction. In the other result, we provide a simpler characterization of the standard context bisimilarity for higher-order processes with parameterization, in terms of the normal bisimilarity that stems from the well-known normal characterization for higher-order calculus. As a spinoff, we show that the bisimulation up-to context technique is sound in the higher-order setting with parameterization.