SOI MOSFET漏极电流扭结处的噪声超调

J. Chen, P. Fang, P. Ko, C. Hu, R. Solomon, T. Chan, C. Sodini
{"title":"SOI MOSFET漏极电流扭结处的噪声超调","authors":"J. Chen, P. Fang, P. Ko, C. Hu, R. Solomon, T. Chan, C. Sodini","doi":"10.1109/SOSSOI.1990.145699","DOIUrl":null,"url":null,"abstract":"The bias dependence of the drain current noise power of SOI (silicon-on-insulator) MOSFETs was studied, and low frequency noise overshoot at the drain current was observed. The overshoot has a width of about 0.7 V and exhibits a peak noise power which is two orders of magnitude higher than the normal noise level. The SOI devices used in this study were N-channel polysilicon gate MOSFETs on SIMOX (separation by implantation of oxygen) wafers fabricated with conventional submicron CMOS technology. The SOI film thickness, the buried-oxide thickness, and the gate oxide are 100 nm, 300 nm, and 11.5 nm, respectively. A computer-controlled test system was used to conduct the I-V and noise measurement automatically. A model explaining the occurrence of the noise overshoot and the noise peak is proposed.<<ETX>>","PeriodicalId":344373,"journal":{"name":"1990 IEEE SOS/SOI Technology Conference. Proceedings","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Noise overshoot at drain current kink in SOI MOSFET\",\"authors\":\"J. Chen, P. Fang, P. Ko, C. Hu, R. Solomon, T. Chan, C. Sodini\",\"doi\":\"10.1109/SOSSOI.1990.145699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bias dependence of the drain current noise power of SOI (silicon-on-insulator) MOSFETs was studied, and low frequency noise overshoot at the drain current was observed. The overshoot has a width of about 0.7 V and exhibits a peak noise power which is two orders of magnitude higher than the normal noise level. The SOI devices used in this study were N-channel polysilicon gate MOSFETs on SIMOX (separation by implantation of oxygen) wafers fabricated with conventional submicron CMOS technology. The SOI film thickness, the buried-oxide thickness, and the gate oxide are 100 nm, 300 nm, and 11.5 nm, respectively. A computer-controlled test system was used to conduct the I-V and noise measurement automatically. A model explaining the occurrence of the noise overshoot and the noise peak is proposed.<<ETX>>\",\"PeriodicalId\":344373,\"journal\":{\"name\":\"1990 IEEE SOS/SOI Technology Conference. Proceedings\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE SOS/SOI Technology Conference. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOSSOI.1990.145699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE SOS/SOI Technology Conference. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSSOI.1990.145699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

研究了SOI(绝缘体上硅)mosfet漏极电流噪声功率的偏置依赖性,观察到漏极电流处的低频噪声超调。超调宽度约为0.7 V,峰值噪声功率比正常噪声水平高两个数量级。本研究中使用的SOI器件是采用传统亚微米CMOS技术制造的SIMOX(氧注入分离)晶圆上的n沟道多晶硅栅极mosfet。SOI膜厚度为100 nm,埋层氧化层厚度为300 nm,栅极氧化层厚度为11.5 nm。采用计算机控制的测试系统自动进行I-V和噪声测量。提出了一个解释噪声超调和噪声峰值发生的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise overshoot at drain current kink in SOI MOSFET
The bias dependence of the drain current noise power of SOI (silicon-on-insulator) MOSFETs was studied, and low frequency noise overshoot at the drain current was observed. The overshoot has a width of about 0.7 V and exhibits a peak noise power which is two orders of magnitude higher than the normal noise level. The SOI devices used in this study were N-channel polysilicon gate MOSFETs on SIMOX (separation by implantation of oxygen) wafers fabricated with conventional submicron CMOS technology. The SOI film thickness, the buried-oxide thickness, and the gate oxide are 100 nm, 300 nm, and 11.5 nm, respectively. A computer-controlled test system was used to conduct the I-V and noise measurement automatically. A model explaining the occurrence of the noise overshoot and the noise peak is proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信